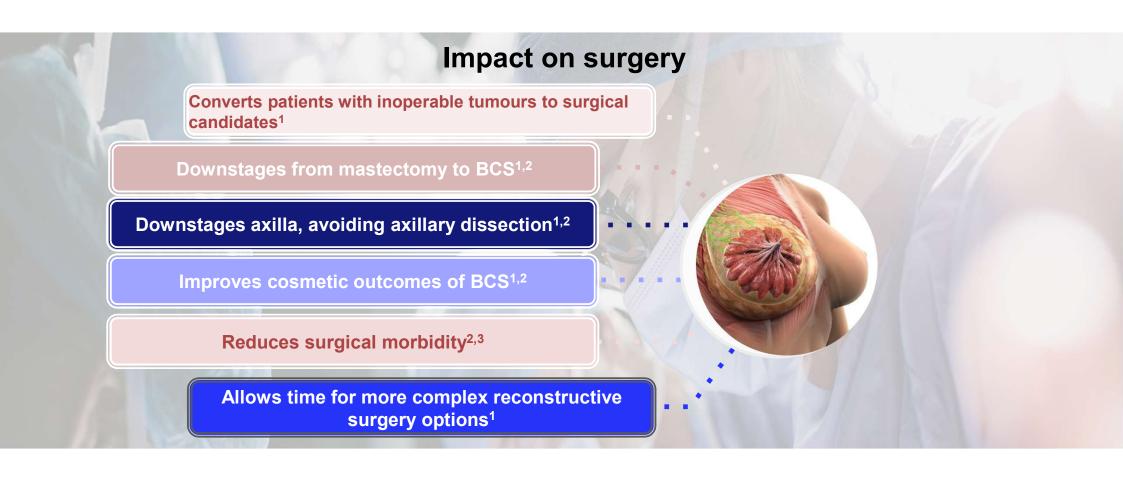

For healthcare professional only

M-ID-00002047-09-2025

Disclaimer

- These educational session only for healthcare professionals
- Roche is committed to the collection and management of safety information relating to our products and we highly encourage reporting adverse events, if any, to Roche Patient Safety at indonesia.safety@roche.com. For inquiries on Roche products or their associated therapeutic area, please contact Roche Medical Information at jakarta.medical_information@roche.com. Alternatively, you may reach out to Roche representative or contact Roche via phone +62 21 3041 3000 or visit https://go.roche.com/medinfoID.

Selection of patients with HER2-positive eBC for neoadjuvant therapy

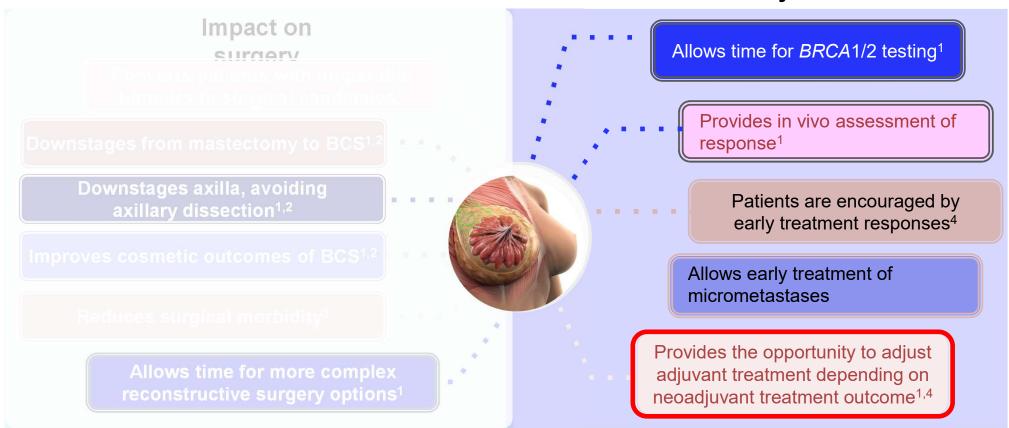


pCR, pathological complete response; SNB, sentinel node biopsy; SoC, standard of care.

1. Gianni L, et al. Lancet Oncol 2016; 2. AGO Breast Cancer Guidelines 2019; 3. NCCN Breast Cancer Guidelines - Version 6. 2020; 4. Cardoso F, et al. Ann Oncol 2019; 5. Burstein HJ, et al. Ann Oncol 2019;

^{*} Anthracyclines + taxanes or TCH ± P, minimum of 6 cycles of chemotherapy. †Based on HER2-positive eBC clinicopathologic characteristics.

Improving surgical options becomes a key benefit of neoadjuvant


BCS, breast-conserving surgery.

1. Cain H, et al. Clin Oncol 2017; 2. Volders JH, et al. Br Can Res Treat 2018;

^{3.} Franceschini G. et al. Ann Ital Chir 2018.

Neoadjuvant therapy has important benefits that go beyond making inoperable disease operable

Other key benefits

BCS, breast-conserving surgery.

^{1.} Cain H, et al. Clin Oncol 2017; 2. Volders JH, et al. Br Can Res Treat 2018;

^{3.} Franceschini G, et al. Ann Ital Chir 2018; 4. Thill M, et al. Geburtshilfe Frauenheilkd 2016.

Neoadjuvant therapy offers several benefits for eBC management

Enables early response assessment¹

- Provides in vivo assessment of response
- Provides an opportunity to adjust adjuvant treatment depending on the outcome of neoadjuvant treatment (pCR or residual disease)
- Prognostic factor: pCR correlate with prolong OS (overall survival)

Enhances surgical options^{1,2}

- Downstages breast tumour, leading to improved chances of conservative surgery
- Downstages axilla, avoiding axillary dissection
- Potentially decreases surgical morbidity
- Allows time for planning reconstruction surgery

Early systemic treatment³

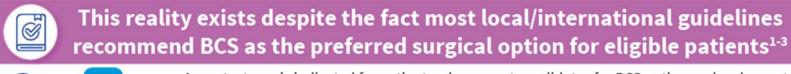
Allows early treatment of micrometastases

BCS (Breast Conserving Surgery) or Mastectomy: Guideline Recommendation

ESMO Asia: BCS is the preferred local treatment option for the majority if eBC patients

Studies suggest 2 out of 3 Asian women with breast cancer may still receive a mastectomy (Mx)

despite guidelines recommending BCS as the preferred surgical option for eligible patients⁴⁻⁶


The decision is often based on the patient's⁷: - fear of cancer recurrence

- perception that health outweighs breast retention

- Possibility of second surgery for margin

However, research shows, **1 in 5** women may regret their initial choice of Mx despite eligibility for

BCS⁷

A mastectomy is indicated for patients who are not candidates for BCS or those who choose to undergo this procedure over BCS.¹

BCS is the preferred local treatment option for the majority of eBC patients, with the use of oncoplastic techniques, to maintain good cosmetic outcomes in technically challenging cases, when needed [A=100% and I, A]?

Surgical resection to remove known malignancy and achieve 'no ink on tumour' margins is the standard, regardless of tumour histology or grade, or the patient's age.³

BCS, breast-conserving surgery; eBC, early breast cancer; ESMO, European Society for Medical Oncology; ESMO PAGA, ESMO Pan-Asian Guidelines Adaptation; ESMO MCBS, ESMO Magnitude of Clinical Benefit Scale; HER2, human epidermal growth factor receptor 2; Mx, mastectomy; NAT, neoadjuvant therapy; NCCN, National Comprehensive Cancer Network; SGBCC, St. Gallen International Breast Cancer Conference.

References: 1. National Comprehensive Cancer Network®: Breast Cancer. Version 4.2024. Retrieved from https://www.nccn.org/. Accessed Septt 2024. 2. Y.H. Park, E. Senkus-Konefka, S.A. Im, et al. Ann Oncol. 2020;31(4):451-469. 3. Burstein HJ, Curigliano G, Thürlimann B, et al. Ann Oncol. 2021;32(10):1216-1235. 5. Sinnadurai S, Kwong A, Hartman M, et al. BJS Open. 2018;3(1):48-55. 6. Huang S, Yang Q, Zheng X, et al. BMC Cancer.2023;23(1):23. 7. Sarkar P, Huffman KN, Williams T, et al. J Surg Oncol. 2024;129(5):953-964. 8. Lee WQ, Tan VKM, Choo HMC, et al. BJS Open. 2018;3(1):31-37.

Yulina, Femmy (MWJK~JAKARTA), 10/2/2025

Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up[†]

GOOD SCIENCE
BETTER MEDICINE
BEST PRACTICE

SPECIAL ARTICLE

F. Cardoso¹, S. Kyriakides², S. Ohno³, F. Penault-Llorca^{4,5}, P. Poortmans^{6,7}, I. T. Rubio⁸, S. Zackrisson⁹ & E. Senkus¹⁰, on behalf of the ESMO Guidelines Committee^{*}

Surgery in Early Breast Cancer

The major change in the surgical treatment of primary breast cancer has been a shift towards Breast Conservation techniques, which started >30 years ago.

Currently, in western Europe, 60%–80% of newly diagnosed cancers are amenable to breast conservation (wide local excision and RT), at diagnosis or after PST.

A neo-adjuvant approach should be preferred in subtypes highly sensitive to ChT, such as triple-negative and HER2-positive, in tumours >2 cm [II, A] and/or a positive axilla

In some patients, **Mastectomy is still carried out due to**:

- Tumour size (relative to breast size)
- Tumour multi-centricity
- Inability to achieve negative surgical margins after multiple resections
- Prior radiation to the chest wall/breast or other contraindications to RT
- Unsuitability for oncoplastic breast conservation
- Patient choice

BCT+RT presents comparable OS with Mastectomy in Asian women¹⁻³

	No. of women	5-year OS (%)	Crude HR	Adjusted HR
Overall cohort	3536			
Mastectomy	2245	92.9 (91.7, 94.1)	1.00 (reference)	1.00 (reference)
BCS	1291	94.9 (93.5, 96.3)	0.80 (0.64, 1.02)	0.81 (0.64, 1.03)*
Subgroups				
Age at diagnosis 20–39 years	911			
Mastectomy	566	90.0 (87.3, 92.7)	1.00 (reference)	1.00 (reference)
BCS	355	91.4 (87.9, 94.9)	0.80 (0.55, 1.17)	0.80 (0.52, 1.21)*
Age at diagnosis 40–49 years	2625			
Mastectomy	1699	93.8 (92.4, 95.2)	1.00 (reference)	1.00 (reference)
BCS	936	96.2 (94.8, 97.6)	0.79 (0.60, 1.03)	0.82 (0.61, 1.10)*

Cox regression analysis stratified by propensity score *20 quantiles and deciles estimated using various factors as described in the table.

- This is consistent with meta analysis including 22,598 patients (T1-2 N0-N+) aged ≤ 40 years from five population based studies and pooled study of two clinical trials comparing BCS with mastectomy¹
- The study assessed trends in the surgical management of Asian women (n=3.536) with stage I-II breast cancer in 4 hospitals in Malaysia, Siangapore, Hong Kong between 1990 and 2012. 1

BCS, breast-conserving surgery; HR, hazard ratio; OS, overall survival

^{1.} Sinnadurai S, Kwong A, Hartman M, et al. BJS Open. 2018;3(1):48-55. 2. Vila J, Gandini S, Gentilini O. Breast. 2015;24:175-181. 3. De la Cruz Ku G, Karamchandani M, Chambergo-Michilot D, et al. Ann 11 Surg Oncol. 2022;29(10):6163-6188.

Meta-analysis: BCS was associated with improved OS compared with Mastectomy

- With respect to similar OS outcomes for BCS+RT and Mx documented in several randomised trials, some studies have shown improved survival and fewer post-surgical complications with BCS
- In a meta-analysis of 30 studies (6 RCTs + 24 retrospective cohorts) studying 1,802,128 patients with a follow-up ranging from 4 to 20 years; 1,075,563 and 744,565 underwent BCS+RT and Mx, respectively

BCS was associated with improved OS compared with Mx

	BCS+RT	Mx			
Study	Total	Total	Risk ratio	RR	95% CI
Study type: Retrospective cohort					
Random effects model	1,055,545	742,650	•	0.57	(0.49, 0.67)
Heterogenity: $l^2=100\%$, $\tau^2=0.1677$, p=0					
Study type: RCT					
Random effects model	2018	1915	•	1.03	(0.96, 1.10)
Heterogenity: $f=100\%$, $\tau^2=0.0008$, p=0.34					
Overall study:					
Random effects model	1.057.563	744 ECE		0.64	(0 EE 0 74)
Heterogenity: β=100%, τ²=0.1853	1,057,563	744,565		0.64	(0.55, 0.74)

Breast-Conserving Surgery or Mastectomy?

Impact on Survival

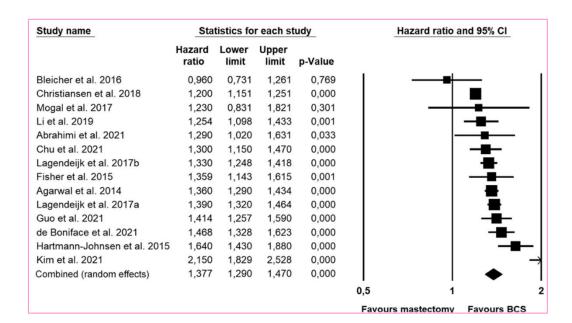
Peer Christiansen, MD, DMSc,* Marco Mele, MD,† Anne Bodilsen, MD, PhD,‡ Nicola Rocco, MD, PhD,§ and Robert Zachariae, DMScII

Annals of Surgery (2022) 4:e205

Received: 9 May 2022; Accepted 3 August 2022

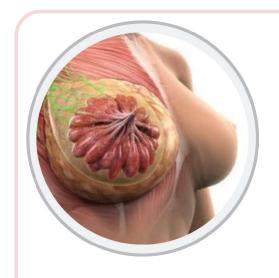
Published online 5 October 2022

DOI: 10.1097/AS9.0000000000000205

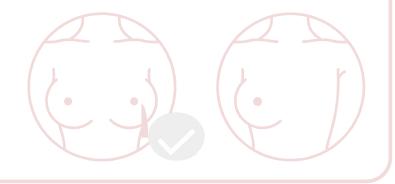

- Data demonstrating that patients with early-stage breast cancer who opt for BCT might have an even better survival compared with those who have a mastectomy
- Conclusion: The combined findings from large population based studies indicate that BCS is associated with survival benefit compared with mastectomy, suggesting that BCS be the recommended treatment of early breast cancer (T1-2N0M0) if radical lumpectomy can be performed

Meta-analysis of survival data in population-based independent

Study name	Statistics for each study				Hazard ratio a	ind 95% CI		
	Hazard ratio	Lower limit	Upper limit	p-Value				
Landercasper et al. 2019	0,900	0,880	0,920	0,000	- 1			
Bleicher et al. 2016	0,934	0,791	1,103	0,421		-		
Christiansen et al. 2018	1,230	1,181	1,281	0,000				
Hwang et al. 2013	1,230	1,210	1,250	0,000				
Chu et al. 2021	1,290	1,203	1,383	0,000			-	
Fisher et al. 2015	1,341	1,184	1,519	0,000			-	
Lagendeijk et al. 2017a	1,350	1,301	1,401	0,000				
Li et al. 2019	1,472	1,331	1,628	0,000			-	
Guo et al. 2021	1,490	1,334	1,664	0,000			-	
Lagendeijk et al. 2017b	1,490	1,422	1,562	0,000			-	
de Boniface et al. 2021	1,566	1,478	1,660	0,000			-	
Hartmann-Johnsen et al. 2015	1,650	1,498	1,817	0,000			-	-
Kim et al. 2021	1,800	1,665	1,946	0,000			-1	
Combined (random effects)	1,342	1,198	1,505	0,000			•	
					0,5	1		
					Favou	rs mastectomy	Favours BCS	


cohorts of breast cancer patients.

"In this meta-analysis of large, population-based studies, BCS + RT was found to be associated with survival benefit compared with mastectomy


(A) Overall survival. The 13 studies included 1,311,600 patients. (B) Breast cancer-specific survival. Fourteen studies with 494,267 patients.

Is tumour downstaging safe?

BCS is comparable to mastectomy for all tumour and patient variables

- Long-term LRR rates with tumour downstaging and BCS are similar to those for traditional mastectomy with adjuvant therapy^{1,2}
- LRR rates are 10.3% for BCS plus XRT compared with 12.6% for mastectomy without XRT.

No increase in complications even with immediate reconstructions⁴

Who is BCS for? 1-5

The right candidate for BCS¹⁻³

Patients eligible for BCS are those who:

Have a tumour <5 cm, that is also small relative to the size of the breast

Are able and willing to have radiation therapy

Do not have active **connective tissue diseases** such as scleroderma or lupus

Have persistently positive pathologic margin

Have no known or suspected genetic predisposition (i.e., BRCA1, BRCA2 mutations)

The benefits of BCS 4

BCS leads to better outcomes and higher QoL compared with Mx.

As seen in a meta-analysis including 920 Asian patients.¹²

- · Body image
 - ► SMD=1.742 (95% CI, 0.579-2.905; p=0.003)
- · Future perspectives
 - ► SMD=0.606 (95% CI, 0.075–1.138; p=0.025)
- · Lowering systemic side effects
 - \triangleright SMD = -0.641 (95% CI, -1.181 to -0.101; p=0.020)
- Multiple studies show advanced BCS techniques delivering good cosmetic outcomes in patients and lower rates of post-operative complications.⁵

SMD, Standard Mean Difference

1. National Comprehensive Cancer Network®: Breast Cancer. Version 4.2024 Retrieved from https://www.nccn.org/. Accessed Sept 2024. 2. Burstein HJ, Curigliano G, Thürlimann B, et al. Ann Oncol. 3. Jordan RM, Oxenberg J. Breast Cancer Conservation Therapy. [Updated 2022 Sep 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547708/.2021;32(10):1216-1235. 4. Ng ET, Ang RZ, TranBX, et al. Int J Environ ResPublic Health. 2019;16(24):4970. 5. Campbell EJ, Romics L. Breast Cancer. 2017;9:521-530.

Does neoadjuvant therapy increase BCS rates?

Two measures to consider:

1 Increase in BCS rate

- Most neoadjuvant trials show a modest increase in BCS rate vs. adjuvant trials
- Increase in pCR rates in neoadjuvant trials (e.g NeoALTTO, GeparSixto) has not translated into increased BCS
 *ates^{4,5}

Trial	BCS rate (adjuvant)	BCS rate (neoadjuvant)
NSABP B18 ¹	60%	68%
Institute Curie ²	77%	82%
CALGB 40603 ³	54%*	68%

2 Conversion rate from mastectomy to BCS

• Rates of conversion from mastectomy to BCS less widely published (but are estimated to be 40–50%)^{6–8}

^{* 54%} of patients in CALGB 40603 were eligible for BCS before receiving neoadjuvant therapy. BCS, breast-conserving surgery.

Primary Systemic Therapy (PST) for HER2+ Operable BC Increases the number of BCS from 5.3% to 41.4%

Patients characteristic:

- N = 152
- · Stage I and II HER2/neu-positive BC
- ≥ 18 yo, median age 47 (37 67)
- T2: 44.1%, T3: 55.9%
- N0: 68.4%, N1: 28.9%, N2: 2.6%
- 95.7% has nonspecific type of BC
- 67% ER/PR negative
- 75.5% grade III
- 100% Ki67>20%
- 90% HER2/neu-positive through IHC
- 100% HER2/neu-positive through FISH or DISH
- 7% had indication for mastectomy

PST Regimen:

- Docetaxel 75mg/m² every 3 weeks
- FEC (5-fluorouracil 600mg/m², Epirubicin 75mg/m², Cyclophosphamide 600mg/m²), every 3 weeks at 4 cycles
- Trastuzumab 8 mg/kg IV loading dose, followed by 6 mg/kg IV, every 3 weeks in a year including in the neoadjuvant and adjuvant setting

Following PST, pCR was achieved in **44.7%** evaluable patients

Breast Conserving
Surgery was performed in
41.4% patients

Table 3 Type of surgery pre and post primary systemic therapy (PST)

	Type Surgery	Pre-PST	Post-PST	
, 	BCS	8 (5.3%)	63 (41.4%)	1
`-	Mastectomy	144 (94.7%)	83 (58.6%)	

Yohana Azhar et al. Primary Systemic Therapy for HER2/Neu-Positive Operable Breast Cancer Increases the Number of Breast-Conserving Surgery and Disease-Free Survival: Retrospective Cohort Analysis at Single Institution. Asian Journal of Oncology 2021; 07(02): 089-095. DOI https://doi.org/ 10.1055/s-0041-1729481

How to approach BCS in HER2+ or TNBC patients 1,2

Utilising neoadjuvant therapy (NAT) to facilitate BCS outcomes 2

NAT aids in optimising BCS outcomes, including in:

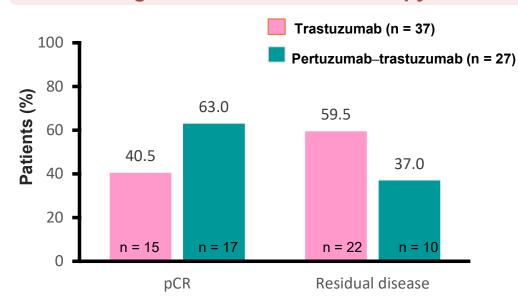
Downstaging the tumour to potentially reduce excision volumes in patients with large tumours.

De-escalating surgical treatment of the axilla and reduction in surgical morbidity.

Delaying surgery to afford time for genetic testing and thorough surgical planning, enabling the tailoring of surgery and facilitating informed decision-making.

Recommendations for NAT initiation in eBC 3,4

NAT should be used to reduce the extent of surgery in locally advanced and large operable cancers, in particular when mastectomy is required due to tumour size [A=100% and I, A]. It should also be considered in all patients with tumours >2 cm for which chemotherapy is deemed necessary, in particular with HER2+ and TNBC subtypes [A=100% and I, B]³


In HER2+ patients with clinical stage II-III disease, the preferred option is initial NAT followed by local therapy. Dual blockade combined with chemotherapy achieves higher pathological complete response rates and is recommended for NAT [I, A; ESMO-MCBS v1.1 score].⁴

BCS, breast-conserving surgery; ESMO MCBS, ESMO Magnitude of Clinical Benefit Scale; HER2, human epidermal growth factor receptor 2; HR, hazard ratio; NAT, neoadjuvant therapy; TNBC, triple negative breast cancer.

1. Cain H et al. Clin Oncol. 2017;29:642-652 2. Chatterjee A, Erban J. Gland Surg. 2017;6:119-124 3.Y.H. Park, E. Senkus-Konefka, S.A. Im, et al. Ann Oncol. 2020;31(4):451-469. 4. Loibl S, André F, Bachelot T, et al. Ann Oncol. 2024;35(2):159-182.

What can be achieved with surgical de-escalation in real clinical practice?

pCR and residual disease in patients treated with single or dual anti-HER2 therapy*

- Downstaging was attempted in 51 patients requiring mastectomy and was achieved in 38 (75%) who received neoadjuvant treatment with trastuzumab or pertuzumab trastuzumab
- Eighteen patients (86%) who received pertuzumab-trastuzumab achieved successful downstaging to BCS (single vs. dual therapy, p = 0.56)

pCR and successful BCS were higher in patients receiving pertuzumab–trastuzumab vs. trastuzumab

^{*} Retrospective analysis data from a large screening institution (Royal Victoria Infirmary) of all patients undergoing neoadjuvant treatment with single or dual anti-HER2 therapy from May 2014–November 2017.

McLean R, et al. Eur J Surg Oncol 2019 (Abstract P086).

Summary

Initial diagnosis

MDT treatment decisions should be based on the risk of recurrence, determined by disease characteristics^{1–5}

Neoadjuvant therapy

Patients with high-risk HER2-positive eBC (tumours ≥ 2 cm or node-positive) should receive neoadjuvant therapy with pertuzumab + trastuzumab and chemotherapy to maximise their chance of achieving a pCR^{1–4}

Surgery

Potential to de-escalate axillary surgery depending on response to treatment^{6,7}

BCS is the preferred local treatment option for the majority if eBC patients⁸

BCS was associated with improved OS compared with Mastectomy