

For healthcare professional only

M-ID-00002057-09-2025

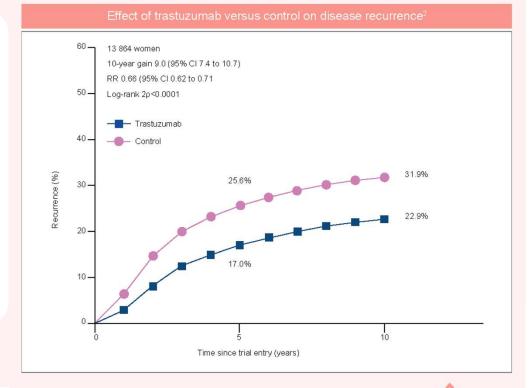
Outline

A CRITICAL UNMET NEED IN EBC

IMPORTANCE OF CHOOSING THE RIGHT PATIENTS PERTUZUMAB-TRASTUZUMAB IN EBC

CONTINUITY OF CARE WITH PERTUZUMAB-TRASTUZUMAB OPTIMISING DURATION OF TREATMENT

The role Kadcyla in residual disease



1 in 4 patients with eBC continue to grapple with unmet needs^{1,2}

- Recurrence-free survival is the goal of treatment in eBC.¹
- However, 1 in 4 patients with HER2+ eBC experience recurrence or death within 10 years despite trastuzumab-based adjuvant therapy.²

67% of first-line HER2+ mBC are recurrent patients after prior treatment in eBC³

Abbreviations: eBC, early breast cancer; HER2+, human epidermal growth factor receptor-2 positive; RR, rate ratio; SoC, standard of care.

References: 1. Moja L, Tagliabue L, Balduzzi S, et al. Trastuzumab containing regimens for early breast cancer (Review). *Cochrane Database Syst Rev.* 2012;2012:CD006243. 2. Early Breast Cancer Trialists' Collaborative group. Trastuzumab for early-stage, HER2-positive breast cancer: a meta-analysis of 13 864 women in seven randomised trials. *Lancet Oncol.* 2021;22(8):1139-1150. 3. Yardley DA, Kaufman PA, Brufsky A, et al. Treatment patterns and clinical outcomes for patients with de novo versus recurrent HER2-positive metastatic breast cancer. *Breast Cancer Res Treat.* 2014;145(3):725-734.

Adapted from Early Breast Cancer Trialists' Collaborative Group. Lancet Oncol. 2021.

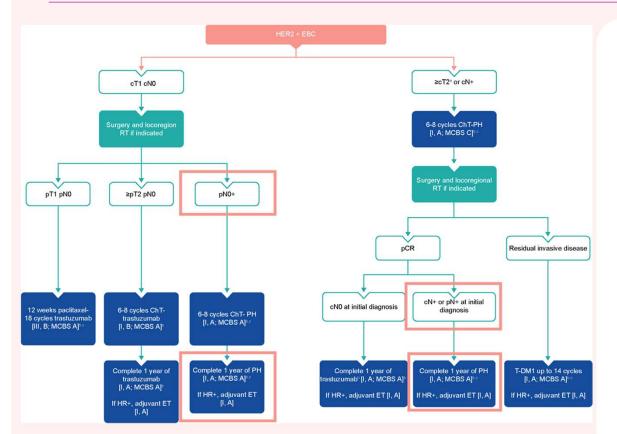
The pertuzumab-trastuzumab dual-action reduces the risk of eBC recurrence¹

- **Dual blockade** of HER2 **improves outcomes** than a single anti-HER2 agent alone.¹
- Pertuzumab-trastuzumab reduced the risk of recurrence by 20% when compared with trastuzumab alone in a recent meta-analysis of 10 RCTs investigating 15,284 patients.¹

IDFS survival stratified by type of dual HER2 blockade regimen¹

Study or subgroup	Log [hazard ratio]	SE	Weight (%)	Hazards ratio IV , random , 95% CI	Hazards ratio IV , random , 95% CI
1.6.1 T+L					
de Azambuja 2014	-0.25	0.26	2.8	0.78 [0.47, 1.30]	
Moreno-Aspitia1 2017	-0.15	0.08	29.2	0.86 [0.74, 1.01]	-
Moreno-Aspitia2 2017	-0.07	0.07	38.2	0.93 [0.81, 1.07]	4
Subtotal (95% CI)			70.1	0.90 [0.81, 0.99]	•
Heterogeneity: tau ² = 0.0 Test for overall effect: Z =		(P=0.65	5); I ² = 0%		
1.6.2 T+P					
Gianni 2016	-0.37	0.36	1.4	0.69 [0.34, 1.40]	
von Minckwitz 2017	-0.21	0.11	15.4	0.81 [0.65, 1.01]	
Subtotal (95% CI)			16.9	0.80 [0.65, 0.98]	
Heterogeneity: tau² = 0.0 Test for overall effect: Z =		(P=0.67	7); I ^z = 0%		
1.6.3 T+N				. 70 /0 50 . 0.00	
Martin 2017	-0.31	0.12	13.0	0.73 [0.58, 0.93]	
Subtotal (95% CI)	are.		13.0	0.73 [0.58, 0.93]	
Heterogeneity: not applic Test for overall effect: Z =					
rest for overall effect. 2 -	2.30 (F=0.10)				
Total (95% CI)			100.0	0.86 [0.79, 0.93]	•
Heterogeneity: tau ² = 0.0		P=0.57); $I^2 = 0\%$		
Test for overall effect: Z =					0.2 0.5 1 2 5
Test for subgroup differer	nces: $chi^2 = 2.84$; df	= 2 (P=	=0.24); l ² =	29.6% Favo	ours [dual blockade] Favours [control]

Adapted from Yu L, et al. J Oncol 2020.1



Abbreviations: CI, confidence interval; eBC, early breast cancer; HER2, human epidermal growth factor receptor 2; IDFS, invasive disease-free survival; IV, inverse-variance method; L, lapatinib; N, neratinib; P, pertuzumab; RCT, randomised controlled trial; SE, standard error; T, trastuzumab.

Reference: 1. Yu L, Fu F, Li J, et al. Dual HER2 blockade versus a single agent in trastuzumab-containing regimens for HER2-positive early breast cancer: A systematic review and meta-analysis of randomized controlled trials. *J Oncol.* 2020;2020:5169278.

The ESMO Clinical Practice Guideline for the management of HER2+ eBC1

Turquoise: combination of treatments or other systemic treatments; white: other aspects of management; blue: systemic anticancer therapy. c, clinical; CISH, chromogenic in situ hybridisation; ChT, chemotherapy; EBC, early breast cancer; EMA, European Medicines Agency; ESCAT, ESMO Scale for Clinical Actionability of molecular Targets; ET, endocrine therapy; FDA, Food and Drug Administration; HER2, human epidermal growth factor receptor 2; PH, pertuzumab-trastuzumab; HR, hormone receptor; MCBS, ESMO-Magnitude of Clinical Benefit Scale; N, node; p, pathological; pCR, pathological complete response; RT, radiotherapy; T, tumour; T-DM1, trastuzumab emtansine.

^aTumours <2 cm can be considered for neoadjuvant therapy. ^bESMO-MCBS v1.1 was used to calculate scores for new therapies/indications approved by the EMA or FDA. The scores have been calculated and validated by the ESMO-MCBS Working Group and reviewed by the authors (https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbsevaluation-forms).

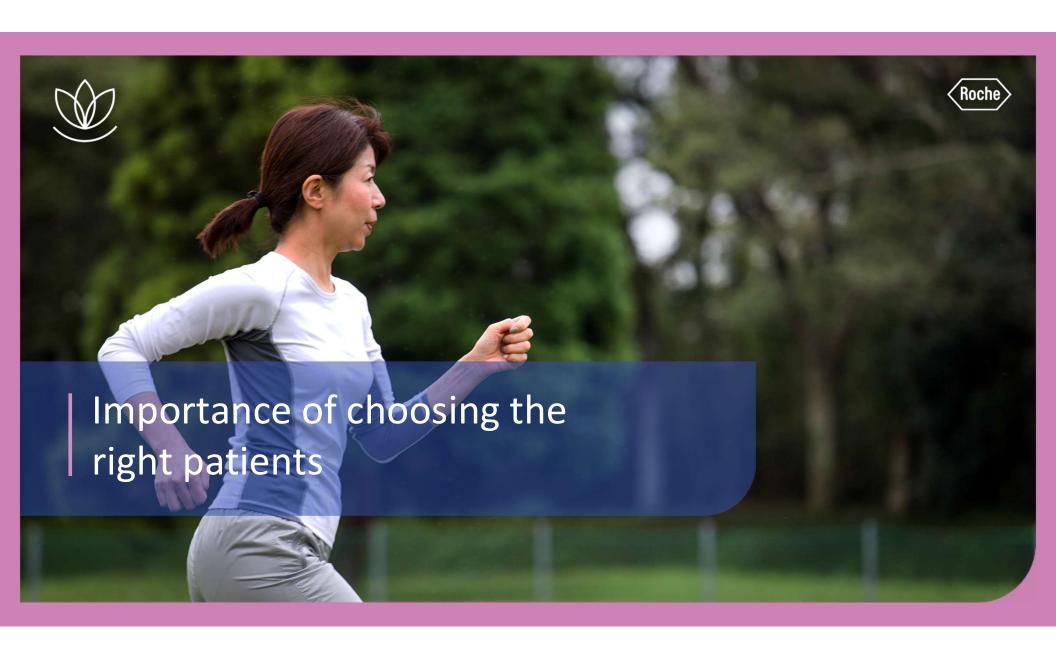
^cESCAT score I-A if HER2 gene amplification by FISH/CISH. ESCAT scores apply to alterations from genomic-driven analyses only. These scores have been defined by the guideline authors and assisted as needed by the ESMO Translational Research and Precision Medicine Working Group. See Supplementary Table S7, available at

https://doi.org/10.1016/j.annonc.2023.11.016, for more information on ESCAT scores.

Pertuzumab is approved for 3-6 cycles in neoadjuvant setting for early breast cancer treatment.²

Reference: 1. Loibl S, Andre F, Bachelot T, et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2024;35(2):159-182. 2. BPOM. Product Information PHESGO. Feb 2025. 3. BPOM. Product Information Perjeta. 2024

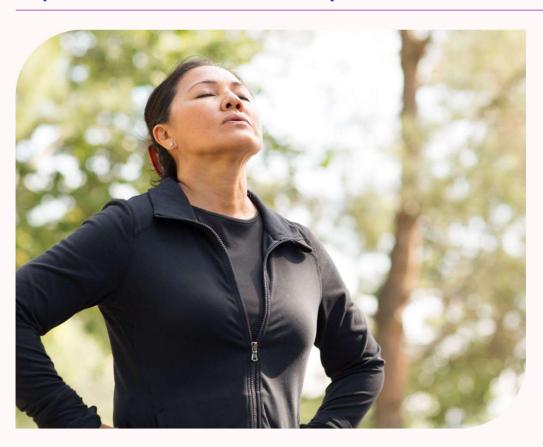
Give HER every chance possible. Continue the fight^{1,2}



- Trastuzumab-based adjuvant therapy alone is **not enough** to prevent eBC from recurring.¹
- A dual blockade of HER2 with pertuzumab-trastuzumab can significantly improve your patient's odds of IDFS.²

Abbreviations: eBC, early breast cancer; EFS, event-free survival; HER2, human epidermal growth factor receptor 2; iDFS, invasive disease-free survival.

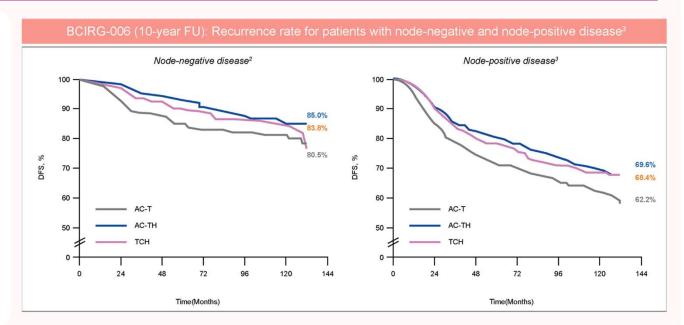
References: 1. Early Breast Cancer Trialists' Collaborative group. Trastuzumab for early-stage, HER2-positive breast cancer: a meta-analysis of 13 864 women in seven randomised trials. Lancet Oncol. 2021;22(8):1139-1150. 2. Yu L, Fu F, Li J, et al. Dual HER2 blockade versus a single agent in trastuzumab-containing regimens for HER2-positive early breast cancer: A systematic review and meta-analysis of randomized controlled trials. J Oncol. 2020;2020:5169278.



Optimise HER outcome. Identify the ideal candidate for pertuzumab-trastuzumab¹

- Identifying the right candidate for pertuzumab-trastuzumab maximises treatment efficacy¹
- Minimises the potential risks of over- or under-treatment¹

So, who would benefit most from pertuzumab-trastuzumab?


Reference: 1. Scharl A, Kuhn T, Papathemelis T, et al. The right treatment for the right patient – personalised treatment of breast cancer. *Geburtshilfe Frauenheilkd*. 2015;75(7):683-691.

Node-positivity increases the risk of disease recurrence in eBC1-3

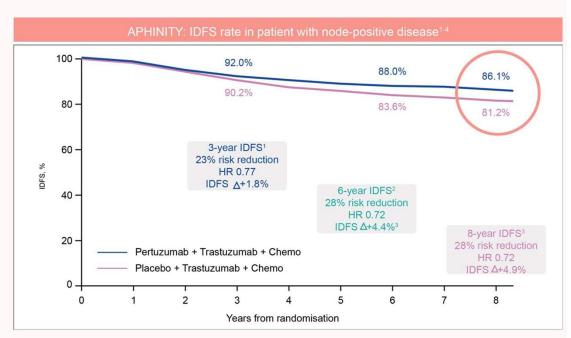
- Node involvement is directly related to the risk of breast cancer recurrence.¹
- After 10 years, patients with node-positive HER2+ eBC have a 15% higher risk of recurrence versus patients with node-negative disease (30% vs 15%, respectively), despite trastuzumab-based adjuvant therapy.^{2,3}

Adapted from Slamon DJ, et al. SABCS 2015. Oral Presentation.3

Node-positive HER2+ eBC warrants a more aggressive therapeutic approach.¹⁻³

Abbreviations: AC, doxorubicin/cyclophosphamide; C, carboplatin; DFS, disease free survival; eBC, early breast cancer; FU, follow-up; H, trastuzumab; T, docetaxel.

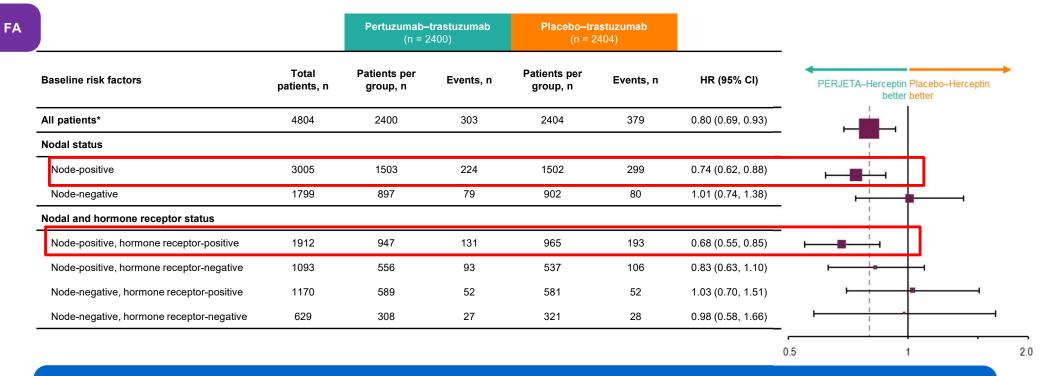
References: 1. Clanfrocca M, Goldstein LI. Prognostic and predictive factors in early-stage breast cancer. Oncologist. 2004;9(6):606-616. 2. Roche, data on file. 3. Slamon DJ, Eiermann W, Robert NJ, et al. Ten year follow-up of BCIRG-006 comparing doxorubicin plus cyclophosphamide followed by docetaxel (AC→T) with doxorubicin plus cyclophosphamide followed by docetaxel (AC→T) with doxorubicin plus cyclophosphamide followed by docetaxel (AC→T) with doxorubicin plus cyclophosphamide followed by docetaxel and trastuzumab (AC→TH) with docetaxel, carboplatin and trastuzumab (TCH) in HER2+ early breast cancer. Presented at the San Antonio Breast Cancer Symposium in San Antonio, TX; December 8–12, 2015. SABCS Oral Presentation.



Patients with node-positive eBC are the ideal candidates for pertuzumab-trastuzumab¹⁻⁴

 Subgroup analysis from the 8.4year follow-up of the APHINITY trial* demonstrated:

Patients with node-positive eBC continued to derive benefit, with a 28% reduction in the risk of recurrence or death with pertuzumab + trastuzumab + chemo compared to placebo + trastuzumab + chemo.^{3,4}



Adapted from Loibl S, et al. ESMO Virtual Plenary. July 2022.3

Refer to the appendix for the APHINITY trial design.

Abbreviations: chemo, chemotherapy; eBC, early breast cancer; HR, hazard ratio; IDFS, invasive disease-free survival
References: 1. von Minckwitz G, Procter M, de Azambuja E, et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 2017;377(2):122-131. 2. Piccart M, Procter M, Fumagalli D, et al. Adjuvant Pertuzumab and Trastuzumab in Early
HER2-Positive Breast Cancer in the APHINITY Trial: 6 Years' Follow-Up. J Clin Oncol. 2021;39(13):1448-1457. 3. Loibl S, Jassem J, Sonnenblick A, et al. Updated results of APHINITY at 8.4 years median follow up. Presented at ESMO Virtual Plenary. July 14–15, 2022. 4. Loibl
S, Jassem J, Sonnenblick A, et al. VP6-2022: Adjuvant pertuzumab and trastuzumab in patients with early HER-2 positive breast cancer in APHINITY: 8.4 years' follow-up. Ann Oncol. 2022;33(9):P986-987.

IDFS benefit of PHESGO in subgroups according to nodal and hormone receptor status IDFS benefit of PHESGO was seen irrespective of hormone receptor status

• The clinically meaningful IDFS benefit in the node-positive subgroup was maintained after a median 11.3 years of follow-up; no additional benefit of pertuzumab was seen in the node-negative subgroup

CI, confidence interval; FA, final analysis; HR, hazard ratio; IDFS, invasive disease-free survival; ITT, intention-to-treat.

Loibl S, et al. ESMO BC 2025 (LBA1; oral presentation).

^{*} Unadjusted analysis of the ITT population.

Longer recurrence-free interval in patients of Chinese origin¹

 A higher proportion of nodal involvement was observed in Chinese patients in a subgroup analysis of the APHINITY* trial.¹

Numerical improvement in IDFS was observed with the addition of pertuzumab to trastuzumab in Chinese patients

 A meaningful benefit was shown in the node-positive subgroup when compared with the node-negative subgroup (IDFS event-free rates at 3 years: 91.4% vs 89.4%; HR, 0.65; 95% CI, 0.36–1.16) Summary of key efficacy end points in the Chinese population and the global population of the APHINITY study¹

	Chine	ese population	Global population (10)			
	Pertuzumab arm (n=275)	Placebo arm (n=283)	Pertuzumab arm (n=2400)	Placebo arm (n=2404)		
IDFS						
Patients with event, n (%) HR, (95% CI)	21 (7.6)	31 (11.0)	171 (7.1)	210 (8.7)		
1110, (30% 01)	0.69 (0.	39-1.19)	0.81 (0.66 - 1.00)			
IDFS including SPNBC						
Patients with event, n (%)	24 (8.7)	33 (11.7)	189 (7.9)	230 (9.6)		
HR, (95% CI)	0.74 (0.	44-1.25)	0.82 (0.68-0.99)			
DRFI						
Patients with event, n (%)	16 (5.8)	23 (8.1)	119 (5.0)	145 (6.0)		
HR, (95% CI)	0.70 (0.	37-1.33)	0.82 (0.64-1.04)			
os						
Patients with event, n (%)	8 (2.9)	12 (4.2)	80 (3.3)	89 (3.7)		
HR, (95% CI)	0.67 (0.	28-1.65)	0.89 (0.6	66-1.21)		

HRs for the global population were estimated by Cox regression, stratified by nodal status, protocol version, central hormone receptor status, and adjuvant chemotherapy regimen. HRs presented for the Chinese population were estimated by unstratified Cox regression.

Adapted from Shao Z, et al. Jpn J Clin Oncol. 2021.1

Pertuzumab arm = pertuzumab + trastuzumab + chemo; placebo arm = placebo + pertuzumab + chemo *Refer to the appendix for the APHINITY trial design.

Abbreviations: chemo, chemotherapy; CI, confidence interval; DRFI, distant recurrence-free interval; HR, hazard ratio; IDFS, invasive disease-free survival; OS, overall survival; SPNBC, second primary non-breast cancer.

Reference: 1. Shao Z, Tseng L, Huang C, et al. Pertuzumab and trastuzumab as adjuvant treatment for HER2-positive early breast cancer: outcomes in Chinese patients in the APHINITY study. *Jpn J Clin Oncol*. 2021;51(3):345-353.

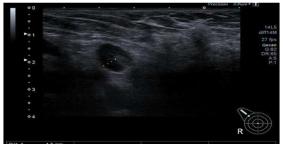
Continue the fight for your patients with pertuzumab-trastuzumab^{1,2}

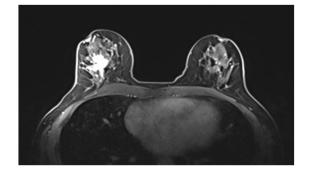
- Patients with node-positive disease continue to derive clear benefit from addition of pertuzumab to trastuzumab and chemo.¹
- Pertuzumab + trastuzumab + chemo demonstrates a 35% reduction in the risk of recurrence or death (at 3 years) in Chinese patients with node-positive disease compared to placebo + trastuzumab + chemo.²

Mrs M, 48-year-old, premenopausal lady, presented with a lump in her right breast for 1 month

Relevant information

Corporate executive


Married with 2 children


No known medical illness/ prior surgeries

Declined gBRCA test

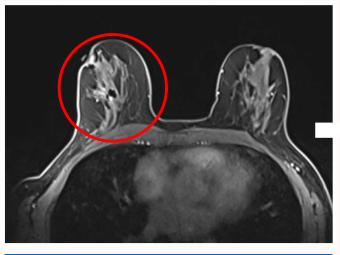
Notes: She wishes to avoid mastectomy if possible.

Diagnosis and Staging

Breast examination:	3-4 cm lump at the right breast. Not fixed, normal overlying skin and nipple No Axillary LN palpable		
Ultrasound Breasts	Single 30 mm tumour at right breast, one suspicious axillary LN, 1.2 cm		
CN Biopsy	Ductal invasive carcinoma, Grade 3, ER 6/8, PR 4/8, Ki67 50%, HER2 IHC 3+ (Ventana 4B5)		
MRI breast	3.1 mm lesion One suspicious lymph node		
CT Scan chest/abdomen	No evidence of distant metastases		

Clinical stage 2B, cT2 cN1 M0, ER+PR+HER2+

ER, oestrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; IHC, immunohistochemistry; LN, lymph node; MRI, magnetic resonance imaging; R: Right; Ki67, Antigen Kiel 67; c, clinical; T, tumour; N, node, M, metastasis. Note: Images courtesy of Mr Henry Cain


Treatment Journey

- Started on 6 cycles of neoadjuvant: docetaxel + carboplatin + PHESGO (TCHP)
- Continue with surgery & evaluate neoadjuvant response

Before neoadjuvant therapy

After neoadjuvant therapy

ypT0 ypN0

Histopathological examination:

Pathological Complete

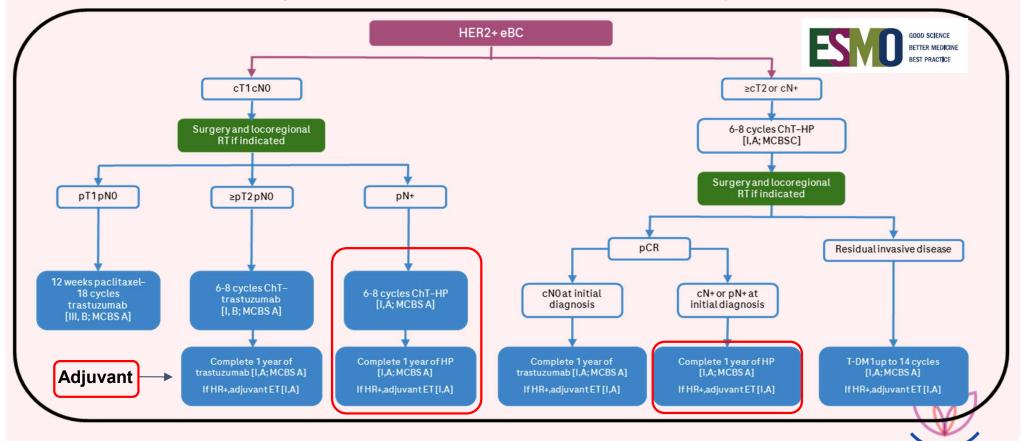
Response (pCR)

If Mrs M's neoadjuvant therapy resulted in pCR (ypT0N0M0), what optimal adjuvant treatment regimen would you choose for the best outcome?

Continue pertuzumab + trastuzumab SC (PHESGO) to complete 18 cycles

Continue trastuzumab to complete 18 cycles

Ensuring continuity in care: transition from neoadjuvant to adjuvant treatment phases¹⁻⁴


- **15–20%** of patients still experience relapse within 5 years.¹
 - O This is despite achieving pCR after neoadjuvant treatment in eBC.¹

International guidelines recommend continuing adjuvant Pertuzumab-trastuzumab treatment in patients with node-positive eBC even after achieving pCR.²⁻⁴

Abbreviations: eBC, early breast cancer; NCCN, National Comprehensive Cancer Network; pCR, pathological complete response.

References: 1. Huober J, van Mackelenbergh M, Schneeweiss A, et al. Identifying breast cancer patients at risk of relapse despite pathological complete response after neoadjuvant therapy. NPJ Breast Cancer. 2023;9(1):23.2. NCCN Clinical Practice Guidelines in Oncology. Breast Cancer. Version 1.2024. Accessed 27 January 2024. Available at: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. 3. Loibl S, Andre F, Bachelot T, et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2024;35(2):159-182. 4. Park YH, Senkus-Konefka E, Im SA, et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with early breast cancer: a KSMO-ESMO initiative endorsed by CSCO, ISMPO. JSMO. MOS. SSO and TOS. Ann Oncol. 2020;31(4):451-469.

Pan Asian ESMO: Complete 1 Year Pertuzumab+Trastuzumab for Nodes positive at initial diagnosis and for pCR patients after neoadjuvant treatment

Reference: 1. K. H. Park et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis, treatment and follow-up of patients with early breast cancer. ESMO Open. https://doi.org/10.1016/j.esmoop.2024.102974

. 2. BPOM. Product Information PHESGO. Feb 2025. 3. BPOM. Product Information Perjeta. 2024

Guidelines support pertuzumab-trastuzumab even after achieving pCR¹⁻³

NCCN guidelines

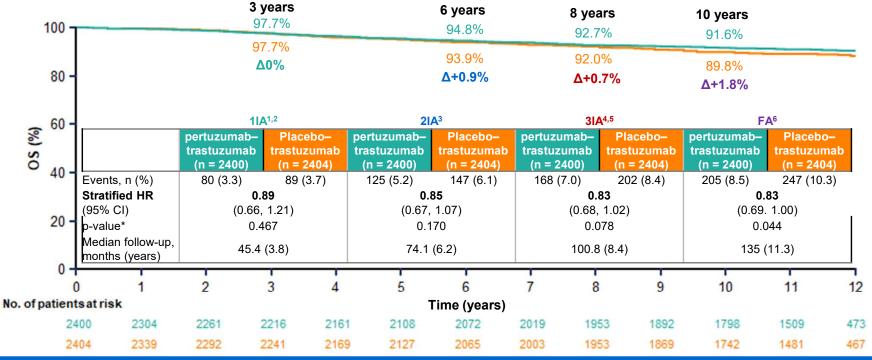
The NCCN guidelines recommend adjuvant pertuzumab-trastuzumab treatment in patients with node-positive eBC at initial staging, irrespective of HR status after achieving pCR, with a category 1 recommendation.1

ESMO

Patients who are cN+ or pN+ at initial diagnosis are recommended to complete one year of adjuvant pertuzumab-trastuzumab even after achieving pCR with neoadjuvant pertuzumab-trastuzumab + chemotherapy. [I,A]²

Pan-Asian adapted ESMO (ESMO PAGA)

The Pan-Asian ESMO guideline recommends to complete one year of dual HER2 blockade in patients who are initially nodepositive (or ER-negative) that achieve pCR after neoadjuvant therapy. [I,A]³



Abbreviations: c, clinical; CPG, clinical practice guideline; ESMO, European Society for Medical Oncology; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; NCCN, National Comprehensive Cancer Network; p, pathological: pCB, pathological complete response

References: 1. NCCN Clinical Practice Guidelines in Oncology. Breast Cancer. Version 1.2024. Accessed 27 January 2024. Available at: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. 2. Loibl S, Andre F, Bachelot T, et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2024;35(2):159-182. 3. Park YH, Senkus-Konefka E, Im SA, et al. Pan-Asian adapted ESMO Clinical Practice Guidelines for the management of patients with early breast cancer: a KSMO-ESMO initiative endorsed by CSCO, ISMPO, JSMO, MOS, SSO and TOS. Ann Oncol. 2020;31(4):451-469.

APHINITY OS Final Analysis

PHESGO showed significant and clinically meaningful OS improvement

At the calendar-driven[†] FA (median FU of 11.3 years) there was a statistically significant and clinically meaningful OS improvement when adjuvant pertuzumab was added to trastuzumab + chemotherapy (17% reduction in the risk of death)6

^{*} p-values of <0.00001, 0.0012, 0.0060 and ≤0.0496 were required for statistical significance at the 1IA, 2IA, 3IA and FA of OS, respectively. 1,3-6

^{1.} von Minckwitz G, et al. N Engl J Med 2017;


[†] Following the 3IA of OS, the timing of the final OS analysis was changed from event-driven to calendar-driven due to a lower than anticipated 2, von Minckwitz G, et al. ASCO 2017 (LBA500; oral presentation): overall death rate.6

^{3.} Piccart M, et al. J Clin Oncol 2021;

Strata: nodal status, protocol version, intended adjuvant chemotherapy regimen, central hormone receptor status, geographical region; HRs were estimated by Cox regression.

^{4.} Loibl S. et al. ESMO Virtual Plenary July 2022: 5. Loibl S, et al. J Clin Oncol 2024;

CI, confidence interval; FA, final analysis; FU, follow-up; HR, hazard ratio; IA, interim analysis; ITT, intention-to-treat; OS, overall survival; Q, quarter.

Pertuzumab-trastuzumab across neoadjuvant and adjuvant settings improves EFS¹

- A pooled analysis* from 5 neoadjuvant studies (n=1763) evaluated outcomes with respect to single versus dual HER2 targeting in neoadjuvant and adjuvant settings.
- Amongst those who achieved pCR, patients treated with pertuzumab-trastuzumab in both settings had the highest 4-year EFS rate compared with those who switched from pertuzumab-trastuzumab to receive adjuvant trastuzumab therapy alone (95% vs 90%).¹

4-year EFS in patients with pCR ¹							
	Trastuzumab -> Trastuzumab (n=236)	Pertuzumab-trastuzumab -> Trastuzumab (n=185)	Pertuzumab-trastuzumab -> Pertuzumab-trastuzumab (n=352)				
Patients remaining at risk, n	179	155	219				
4-year event-free survival rate, % (95% CI)	86 (81–89)	90 (85–94)	95 (92–97)				

Adapted from Swain SM, Macharia H, Cortes J, et al. Cancers (Basel) 2022.1

Pertuzumab-trastuzumab demonstrates an established cardiac safety profile¹⁻³

- The safety profile of pertuzumabtrastuzumab plus chemotherapy was consistent with the previous trials
 - No new or unexpected safety signals emerged
 - Follow-up duration was for 8.4 years¹⁻³

Cardiac toxicity	at the 8.4 year follow-up of the
,	APHINITY* trial ³

Patients, n(%)	Pertuzumab-trastuzumab (n=2364)	Trastuzumab (n=2405)
Primary cardiac, n(%)	19 (0.8)	10 (0.4)
Heart failure NYHA III/IV + LVEF drop^	16 (0.7)	6 (0.2)
Cardiac death [†]	3 (0.1)	4 (0.2)

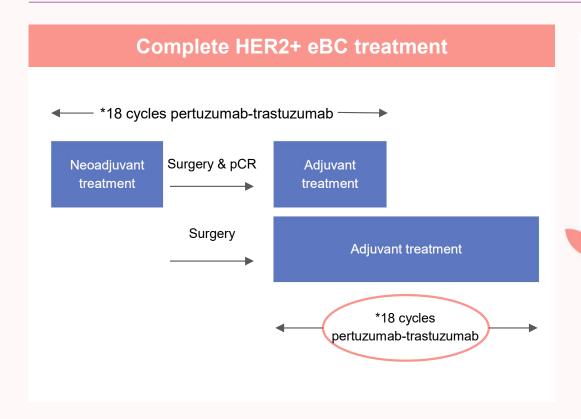
Adapted from Loibl S, et al. ESMO Virtual Plenary. July 2022.3

Incidence of primary cardiac events remained low (<1% in both treatment arms).³

References: 1. von Minckwitz G, Procter M, de Azambuja E, et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer. N Engl J Med. 2017;377(2):122-131. 2. Piccart M, Procter M, de Azambuja E et al. Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years' follow-up. J Clin Oncol. 2021;39(13):1448-1457. 3. Loibl S, Jassem J, Sonnenblick A, et al. Updated results of APHINITY at 8.4 years median follow up. Presented at ESMO Virtual Plenary. July 14–15, 2022.

^{*}Refer to the appendix for the APHINITY trial design.

[^]LVEF drop = ejection fraction drop >10% from baseline AND to below 50%.


[†]Identified by the Cardiac Advisory Board for the trial according to a prospective definition.

Abbreviations: LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.


Continue with pertuzumab-trastuzumab all the way*1,2

- Patients who achieve pCR after neoadjuvant pertuzumab-trastuzumab treatment are still at risk of recurrence.¹
- Continue pertuzumab-trastuzumab after surgery in patients with high risk of recurrence for the better outcomes.²

Challenges of long-term IV administration

Central port

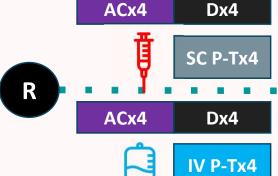
- Central ports invasive
- Takes time for implanting/removing
- Some women feel they've had enough chest surgery
- Infection, leakages and blockages
- Cumbersome, limiting active lifestyle

IV Cannulation

- Repeated cannulation unpleasant for patients
- Potential for necrosis following extravasation
- Damage to peripheral veins over time

PICC line

- Expert insertion needed
- Frequent flushing and dressing to prevent infection and blockage
- Very limiting for active lifestyle


PICC, peripherally inserted central catheter

Courtesy of Lesley Fallowfield

There is Evidence supporting the Clinical Efficacy of **PHESGO**

Early / Locally Advanced HER2+ CA Breast

SC P-Tx414 Surgery

IV P-Tx414

Phase 3 FeDeriCa	IV P-T (252	2) SC P-T (248)	
Pre-C7 Pertuzumab serum C _{trough}	Geometric 1.22 (90% CI 1.	: Mean Ratio 14-1.31)	Non-Inferior
Pathological Complete Response	59.7%	59.5%	HR 0·15 (–8·67 to 8·97) Not affected by BMI
4y Invasive DFS	89.5%	88.5%	HR 1.13 (0.64-1.97)
4y Overall Survival	95.5	94.1	HR 1.26 (0.58-2.72)

Toxicities were similar in FeDeriCa

- Infusion Reactions: 10% IV vs 1% SC
- Injection Site Reactions: 0% IV vs 13% SC


FDChina study (n=200) showed similar Pharmacokinetics and pCR results in a Chinese Population

There is Evidence supporting Patient Preference for **PHESGO**

PHranceSCa

Early Stage HER2+ CA Breast Post Neoadjuvant Chemo + HP and Surgery (N=160)

85.0% of Patients preferred SC P-T over IV

- 13.8% preferred IV P-T over SC
- 86.9% of patients chose to continue with SC P-T
- 88.1% were Very Satisfied / Satisfied with SC P-T
- 67% were Very Satisfied / Satisfied with IV P-T

Main reasons for SC Preference

IV P-T or SC P-T

- **Reduced Clinic Time**
- **Comfort during Administration**

Majority of Healthcare Professionals agreed

that SC P-T was associated with shorter preparation time, and less drug wastage

Switching from P + H IV to PH FDC SC can lead to ~80% reduction in non-drug costs

For a typical patient receiving treatment for HER2+ eBC in Western Europe,* switching from P + H IV to PH FDC SC can lead to:

Up to 85% savings on chair time costs

Up to **65%** savings on patients' productivity losses

Up to **76%** savings on active HCP time costs

Up to **69%** savings on non-drug consumables costs

^{*} Data from a model-based cost-minimisation analysis to quantify non-drug cost differences per patient over a full course of eBC therapy (18 cycles of P + H IV vs. PH FDC SC). Western Europe estimates, eBC, early breast cancer, H, trastuzumab; HCP, healthcare professional; IV, intravenous; P, pertuzumab; PH FDC SC, fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection. Maneyy F, et al. ASCO 2021 (Poster 544).

Clinical trial data: Safety of PHESGO was consistent with that (Roche) of P + H IV

Note: this table is not intended for cross-trial comparisons

Note: this table is not intended for cross-trial comparisons										
		eriCa ; neoadjuvant phases)* ^{,1}	(pooled crossov	PHranceSCa ver period [primary analysis] and continuation period [final analysis]) ^{2–4}			FDChina (primary analysis; neoadjuvant phase) ⁵		US expanded access study (AL42478) ⁶	
Patients, n (%)	P + H IV (n = 252)	PHESGO (n = 248)	P + H IV pooled crossover (n = 160)	PHESGO pooled crossover (n = 160)	P + H IV continuation (n = 21)	PHESGO continuation (n = 138)	P + H IV (n = 100)	PHESGO (n = 100)	PHESGO eBC (n = 74)	PHESGO mBC (n = 69)
Any AE	251 (99.6)	248 (100)	113 (70.6)	120 (75.0)	14 (66.7)	92 (66.7)	97 (97.0)	98 (98.0)	62 (83.8)	62 (89.9)
Grade ≥3 AE	149 (59.1)	132 (53.2)	6 (3.8)	4 (2.5)	2 (9.5)	7 (5.1)	69 (69.0)	72 (72.0)	2 (2.7)	6 (8.7)
Serious AE	52 (20.6)	49 (19.8)	6 (3.8)	2 (1.3)	0	4 (2.9)	19 (19.0)	18 (18.0)	1 (1.4)	3 (4.3)
Grade 5 AE	1 (0.4) ^{†,7}	1 (0.4) ^{‡,7}	0	0	0	0	0	1 (1.0)§	0	0
Treatment discontinuation due to AE	15 (6.0)	12 (4.8)	NR	NR	1 (4.8)	0	2 (2.0)	4 (4.0)	0	3 (4.3)
Cardiac AE Grade ≥3	65 (25.8) 12 (4.8)	52 (21.0) 3 (1.2)	3 (1.9) NR	5 (3.1) NR	1 (4.8) 0	1 (0.7) 0	8 (8.0) [¶] 0	7 (7.0) [¶] 0	1 (1.4) NR	3 (4.3) NR

No new AEs were reported with PHESGO at-home administration, across eBC and mBC (US expanded access study)⁶

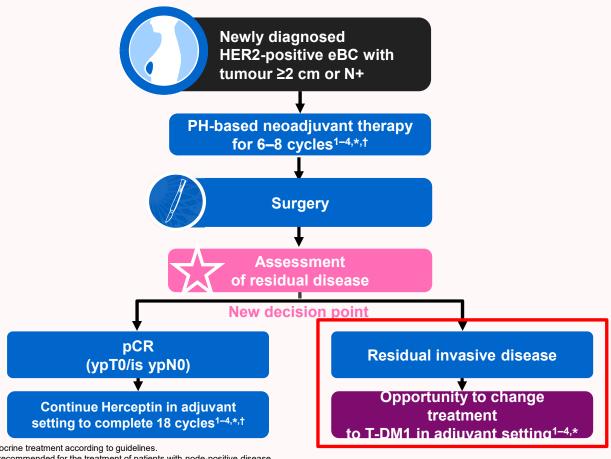
Please see the Appendix for the study designs.

* Patients received initial chemotherapy, followed by HER2-targeted therapy + chemotherapy, in the neoadjuvant phase; * Urosepsis (reported at the primary analysis); * Acute myocardial infarction (reported at the primary analysis); § Cardiac related; ¶ Percentages shown are for discontinuation of any HER2-targeted therapy; ¶ Cardiac dysfunction.

AE, adverse event; eBC, early breast cancer; H, Herceptin, IV, intravenous; mBC, metastatic breast cancer; NR, not reported; P, PERJETA.

1. Jackisch C, et al. ESMO BC 2024 (Poster 114P); 2. O'Shaughnessy J, et al. Eur J Cancer 2021; 152:223-23; 3. O'Shaughnessy J, et al. ESMO BC 2023 (Poster 97P); 4. O'Shaughnessy J, et al. Elin Breast Cancer 2025; epub ahead of print; 5. Shao Z, et al. ESMO Asia 2022 (Oral 1MO); 6. Dang C, et al. ASCO 2022 (Poster 1515); 7. Tan AR, et al. Lancet Oncol 2021; 22:85–97.

If Mrs. M do not achieve pCR after neoadjuvant, means residual invasive disease; what should we recommend for adjuvant treatment?



- 1 No Further Treatment
- Continue pertuzumab trastuzumab to complete18 cycles
- (3) Switch to T-DM1 for 14 cycles

Assessment of residual disease after surgery is a new decision point for adapting adjuvant therapy

^{*} Including loco-regional radiotherapy and adjuvant endocrine treatment according to guidelines.

[†] AGO and ESMO guidelines: (neo)adjuvant PH is only recommended for the treatment of patients with node-positive disease. eBC, early breast cancer; N+, node-positive; pCR, pathological complete response; PH, pertuzumab–trastuzumab.

^{1.} NCCN Breast Cancer Guidelines. Version 4. 2025; 2. AGO Breast Cancer Guidelines. 2022; 3. Cardoso F, et al. Ann Oncol 2019; 4. Burstein HJ, et al. Ann Oncol 2021

International Guidelines recommend changing treatment to KADCYLA in the adjuvant setting for patients with residual invasive disease³⁻⁸

NCCN Breast Cancer Guidelines (v2-2024)³

If residual invasive disease after preoperative therapy:
Kadcyla® alone for 14 cycles

ESMO Guidelines for eBC (2019)⁵

If residual invasive disease: Kadcyla* recommended

AGO Guidelines (2022)4

If pathological complete response not achieved (non-PCR):

Kadcyla® recommended for 14 cycles of anti-HER2 therapy (LoE 1b)†

St. Gallen Guidelines (2021)6

If residual invasive disease:

Kadcyla® for 14 cycles if residual invasive cancer after neoadjuvant therapy

ASCO Guidelines (2020)7

If pathologic invasive residual disease after preoperative therapy

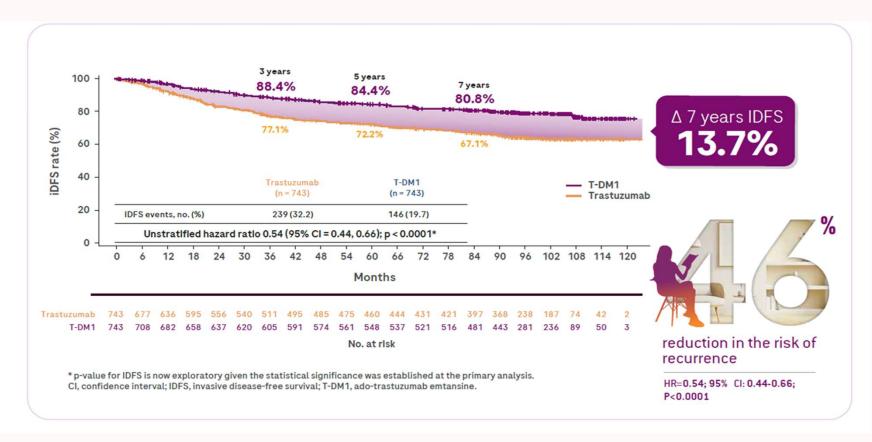
14 cycles of adjuvant Kadcyla® is recommended, unless there is disease recurrence or unmanageable toxicity

Pan Asian Adapted ESMO Guidelines (2020)8

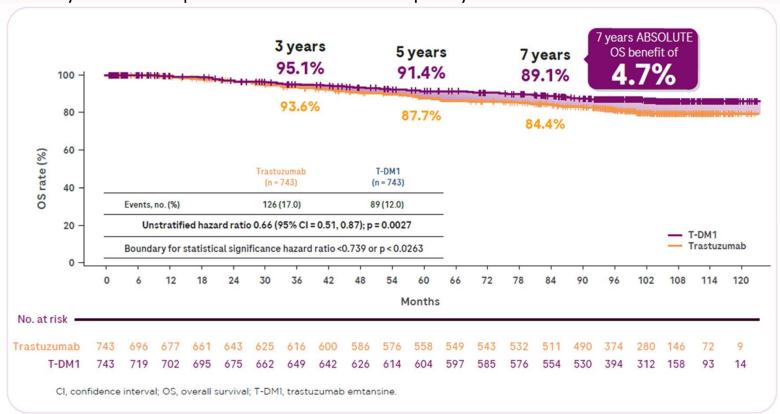
In cases of residual invasive disease after neoadjuvant therapy:

Adjuvant treatment with Kadcyla® for up to 14 cycles (acceptability consensus : 100%)

- * Category 1 listings are based on high-level evidence with uniform NCCN consensus that the intervention is appropriate; † Based on evidence of individual randomised controlled trials;
- ‡ Grade A recommendation based on strong evidence for efficacy with a substantial clinical benefit; strongly recommended


3. NCCN Clinical Practice Guidelines: Breast Cancer. Version 4.2025. 4. Ditsch N, et al. AGO Recommendations for the Diagnosis and Treatment of Patients with Early Breast Cancer: Update 2022. Breast Care (Basel). 2022 Aug;17(4):403-420. doi: 10.1159/000524879; 5. Loibl S, et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol. 2024 Feb;352(2):159-182. doi: 10.1016/j.annonc.2023.11.016; 6. Curigliano G, et al. Understanding breast cancer complexity to improve patient outcomes: The St Gallen International Consensus Conference for the Primary Therapy of Individuals with Early Breast Cancer 2023. Ann Oncol. 2023 Nov;34(11):970-88. doi: 10.1016/j.annonc.2023.08.017; 7. Denduluri N, et al. Selection of Optimal Adjuvant Chemotherapy and Targeted Therapy for Early Breast Cancer: ASCO Guidelines Government and follow-up of patients with early breast cancer: ESMO Open. 2024 May;9(5):102974. doi: 10.1016/j.esmoop.2024.102974.

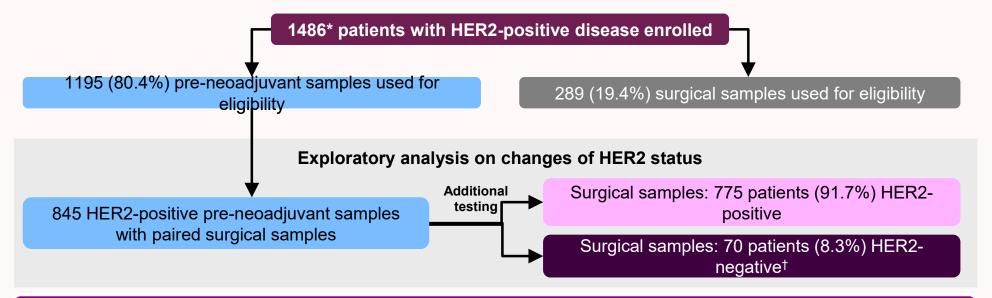
KATHERINE IDFS FINAL ANALYSIS:



1. von Minckwitz G, et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N Engl J Med. 2019 Feb 14;380(7):617-628. doi: 10.1056/NEJMoa1814017; 2. Loibl S, et al. Phase III study of adjuvant ado-trastuzumab emtansine vs trastuzumab for residual invasive HER2-positive early breast cancer after neoadjuvant chemotherapy and HER2-targeted therapy: KATHERINE final IDFS and updated OS analysis. SABCS 2023. (Abstract GS03-12; oral presentation

KATHERINE OVERALL SURVIVAL (OS) Analysis: KADCYLA significantly reduced risk of death by 34% compared to Herceptin alone^{1,2}

2nd OS Analysis of OTT Population at median follow up 8.4 years


^{●*} The final OS analysis will be performed 12 years after FPI; † PA of IDFS, including 1IA of OS (CCOD 2018);

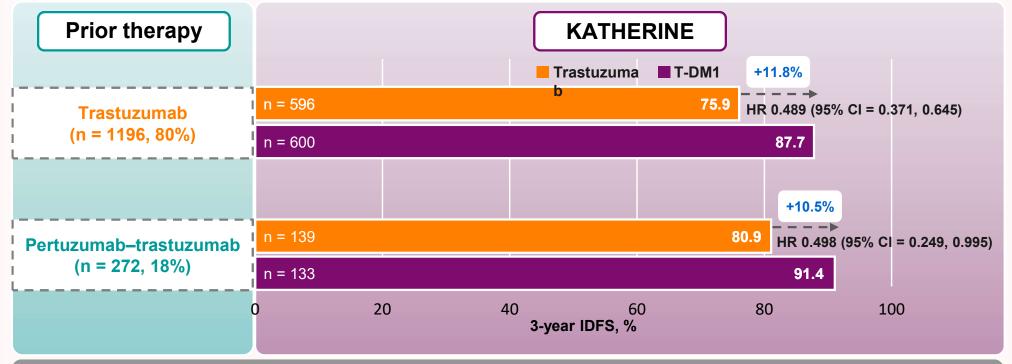
[‡] FA of IDFS, including 2IA of OS (CCOD 2023).

^{•11}A, first interim analysis; 2IA, second interim analysis; CI, confidence interval; eBC, early breast cancer; FPI, first patient in; HR, hazard ratio; IDFS, invasive disease-free survival; mFU, median follow-up; OS, overall survival.

KATHERINE: HER2-negative status at surgery did not impact on the efficacy of T-DM1

In the 70 patients with HER2-negative disease after re-testing of surgical samples:

- No IDFS events in patients randomised to the T-DM1 arm (n = 28)
- 11 IDFS events in patients randomised to the trastuzumab arm (n = 42)


Note: These data should be interpreted with caution due to the small sample size

^{*} Two patients (both in the trastuzumab arm) were not included in this analysis: One did not have centrally confirmed HER2-positive disease and one was inadvertently randomised twice.

[†] Fifty-three HER2-negative and 17 HER2-unknown by IHC 0-1+/ISH unknown IDFS, invasive disease-free survival.

Exploratory analysis: Consistent magnitude of IDFS benefit regardless of prior HER2-directed therapy*

Adjuvant T-DM1 builds on the efficacy gain with pertuzumab—trastuzumab in the neoadjuvant setting

von Minckwitz G, et al. N Engl J Med 2019; 380:617-

^{*} Caution must be exercised as this exploratory analysis involves low patient numbers and the study

Summary

- The incorporation of neoadjuvant anti-HER2 therapy in early breast cancer setting has benefits¹:
 - reducing tumor size, increasing resectability and breast conservation rate,
 - assess response,
 - correlated with long-term outcome (EFS, OS)
- Current international guidelines recommend neoadjuvant therapy for for triple-negative and HER2-positive disease with tumor size > 2 cm or nodes (+)²⁻⁵
- Neoadjuvant Pertuzumab+Trastuzumab (PHESGO) was proven to increase pathological complete response rate, improve EFS, and is recommended by all major international guideline: NCCN, ESMO PAGA, AGO. St Gallen
- Neosphere: Neoadjuvant PERJETA-Herceptin plus chemotherapy nearly doubled pCR rate across subgroups⁶
- International guidelines recommend continuing adjuvant pertuzumab-trastuzumab treatment in patients with nodepositive eBC even after achieving pCR to complete 18 cycles in the adjuvant setting²⁻⁵
- T-DM1 is currently the main anti-HER2 therapy endorsed by international treatment guidelines for treatment of patients who did not achieve pCR (non-pCR) post neoadjuvant treatment²⁻⁵

1. Cain H, et al. Neoadjuvant Therapy in Early Breast Cancer: Treatment Considerations and Common Debates in Practice. Clin Oncol 29. 642-652. 2017. 2. NCCN clinical practice guidelines in oncology: Breast cancer. V4. 2024; NCCN Breast Cancer Guidelines. Version 4, 2024 https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf; 2. AGO Diagnosis and Treatment of Patients with early and advanced Breast Cancer Guidelines. 2023; 3. Cardoso F, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Annals of Oncology. 2019;30(8):1194-1220. doi: https://doi.org/10.1093/annonc/mdz173; 4. Burstein HJ, et al. Esmo Open. Volume 9, Issue 5, May 2024 https://doi.org/10.1016/j.esmoop.2024.002974. Gignni L, et al. 5-year analysis of neoadjuvant pertuzumab and trastuzumab in patients with locally advanced, inflammatory, or early-stage HER2-positive breast cancer (NeoSphere): a multicentre, open-label, phase 2 randomized trial. Lancet Oncol 2016; 17: 791–800

Scan or click on the QR code to access each product full prescribing information

Pregnancy disclaimer:

- If a patient becomes pregnant while receiving Phesgo/ Kadcyla, or within 7 months following the last dose of the product, please immediately report pregnancy to the Roche Patient Safety via email indonesia.safety@roche.com.
- Additional information will be requested during a product-exposed pregnancy and the first year of the infant's life. This will enable Roche to better understand the safety of the product and to provide appropriate information to health authorities, healthcare providers, and patients.
- For additional information, please refer to the Product Information.

Roche is committed to the collection and management of safety information relating to our products and we highly encourage reporting adverse events, if any, to Roche Patient Safety at indonesia.safety@roche.com. For inquiries on Roche products or their associated therapeutic area, please contact Roche Medical Information at jakarta.medical_information@roche.com. Alternatively, you may reach out to Roche representative or contact Roche via phone +62 21 3041 3000 or visit https://go.roche.com/medinfolD.

THANK YOU

