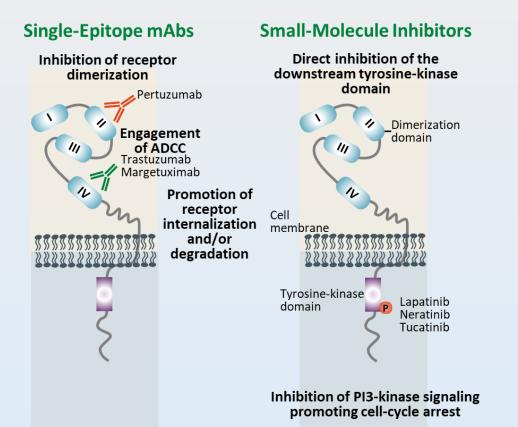
Antibody Drug Conjugates(ADC) in HER2+ metastatic Breast Cancer: What to Consider?

Ming Jing Lee, MD NTUH Hsin-Chu Branch 2024/10/25

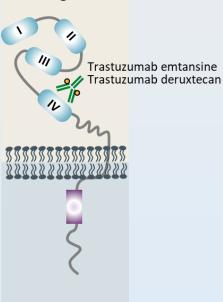
Disclaimer

- These educational sessions is conducted for scientific educational purpose, they may contain information relating to products not yet approved by BPOM, or contain information that is not within the current product label.
- This material is intended only for healthcare professionals.
- The opinions speakers give are of their own and are not influenced by the sponsoring company or the event owner
- Consent to record and share of this material from individuals involved in it have been obtained
- If a patient becomes pregnant while Kadcyla within 7 months following the last dose of the product, please immediately report pregnancy to the Roche Patient Safety via email: indonesia.safety@roche.com
- Additional information will be requested during a product-exposed pregnancy and the first year of the infant's life.
 This will enable Roche to better understand the safety of the produce and to provide appropriated information to health authorities, healthcare providers, and patients.
- For additional information, please refer to the Product information.

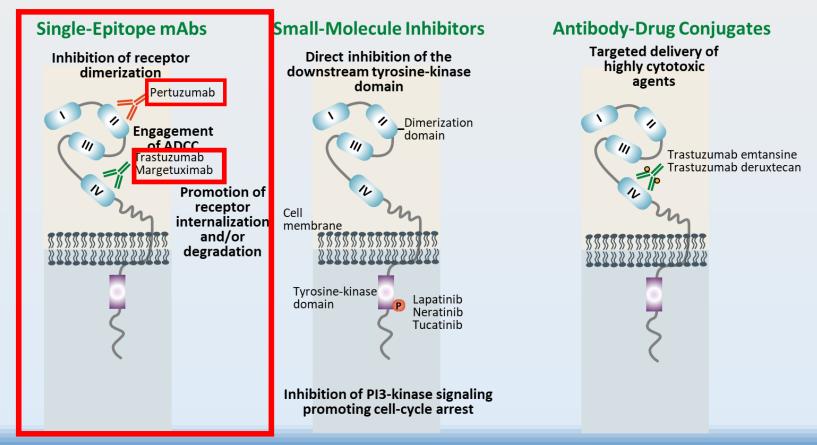

Contents

- 1 Kadcyla: The first ADC for treating metastatic breast cancer(MBC)
- Treatment Recommendations in 2L HER2-positive MBC
- Optimal treatment sequence beyond 2L HER2+ MBC
- 4 Summary

Contents


- Kadcyla: The first ADC for treating metastatic breast cancer(MBC)
- Treatment Recommendations in 2L HER2-positive MBC
- Optimal treatment sequence beyond 2L HER2+ MBC
- 4 Summary

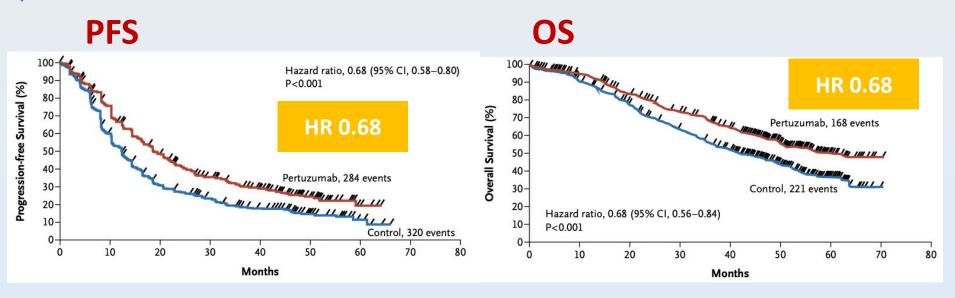
Anti-HER2 therapies

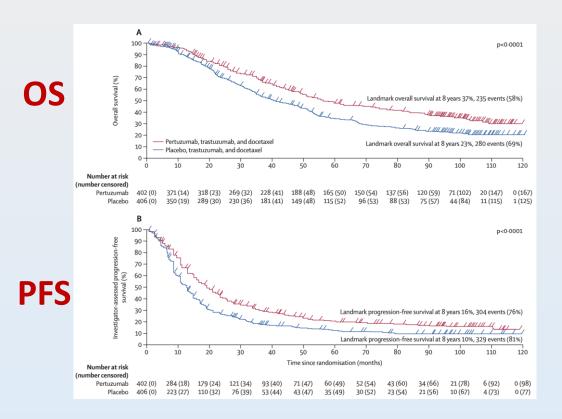


Antibody-Drug Conjugates

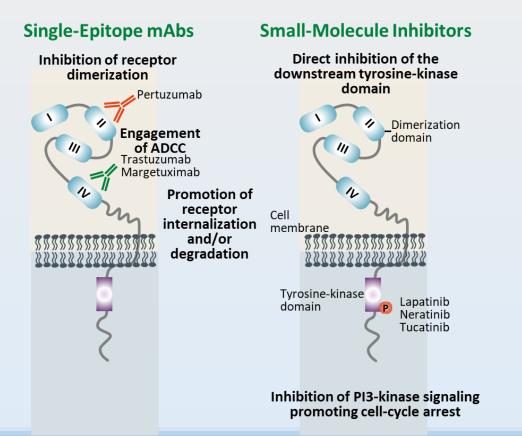
Targeted delivery of highly cytotoxic agents

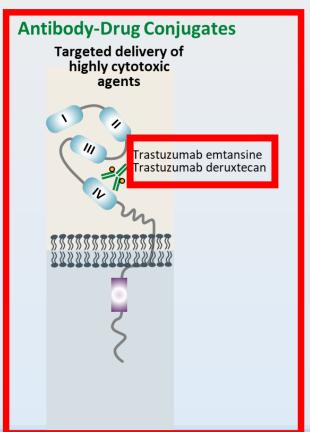
Anti-HER2 therapies


CLEOPATRA trial


HER2 positive Metastatic breast cancer, First-line

Pertuzumab + Trastuzumab + chemotherapy vs Trastuzumab + chemotherapy

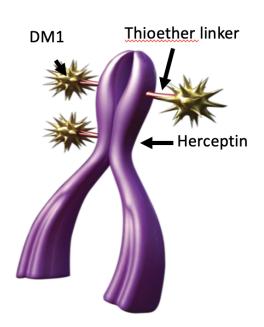

CLEOPATRA trial (99.9mo follow-up)



(10-year follow-up)				
	PHT (n = 402)	HT (n = 406)		
Median OS (mo)	57.1	40.8		
HR (95% CI)	<u>0.69</u> (0.58, 0.82)			
8-year OS rate	37%	23%		
Median PFS(mo)	18.7	12.4		
HR (95% CI)	<u>0.69</u> (0.59, 0.81)			
8-year PFS rates	16%	10%		

End of study analysis

Anti-HER2 therapies



T-DM1 is an ADC specifically designed to target HER2-positive cancer cells, while sparing non-cancer cells

components

T-DM1

Well-understood Herceptin antibody^{1,2}

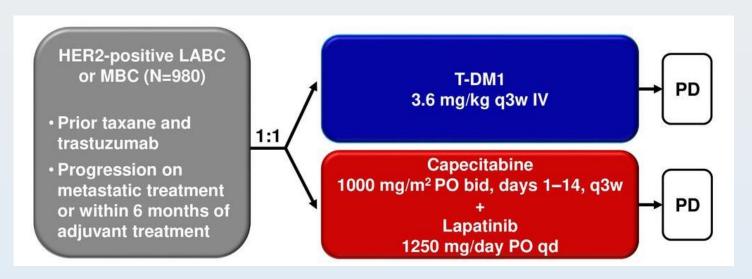
- DM1* is selectively targeted to HER2-overexpressing cells
- Herceptin pharmacodynamic properties retained:
 - Prevention of HER2-activated intracellular signalling
 - Antibody-dependent cellular cytotoxicity
 - Prevention of p95HER2 formation

Stable (non-cleavable) thioether linker^{1,3}

Minimises release of DM1, which would otherwise result in systemic toxicities

Targeted intracellular delivery of DM1 enhances anti-cancer effect^{1,2,4,5}

- DM1 causes apoptosis by inhibiting microtubule assembly
- DM1 is a maytansinoid, which are:
 - 20- to 270-fold more potent than taxanes and vinca alkoids^{1,6}
 - 2–3 orders of magnitude more potent than doxorubicin¹
- Average of 3.0–3.6 DM1 molecules (payload) per 1 Herceptin molecule⁴


^{*} DM1 is a cytotoxic anti-microtubule agent

^{1.} Junttila TT, et al. Breast Cancer Res Treat 2011; 128:347-356; 2. Hudis CA. N Engl J Med 2007; 357:39-51;

^{3.} Burris HA 3rd, et al. J Clin Oncol 2011; 29:398-405; 4. Lewis Phillips GD et al. Cancer Res 2008; 68:9280-9290;

^{5.} Barok M, et al. Cancer Lett 2011; 306:171–179; 6. BPOM Product Information Kadcyla Dec 2021.

EMILIA trial

Co-primary endpoints: PFS (by independent review), OS, safety

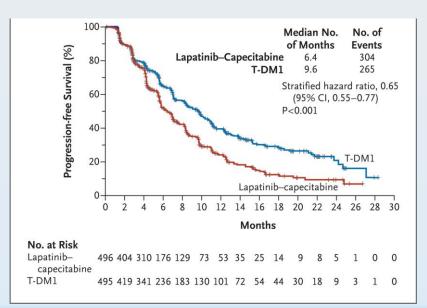
Key secondary objectives: PFS (by investigator), ORR, TTF, CBR

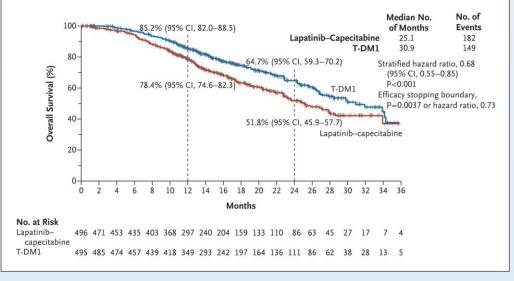
EMILIA trial

ORR L+C

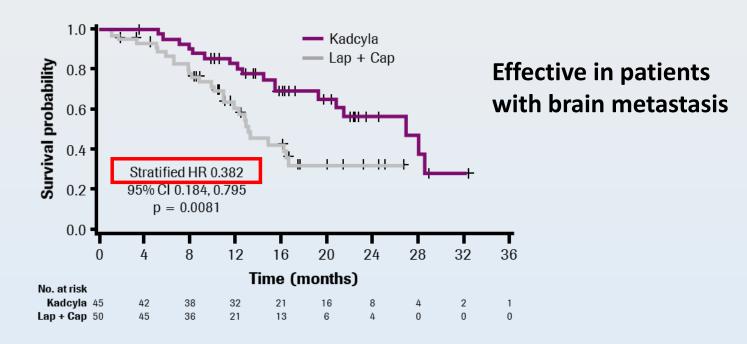
L + C: 30.8%

T-DM1: 43.6%

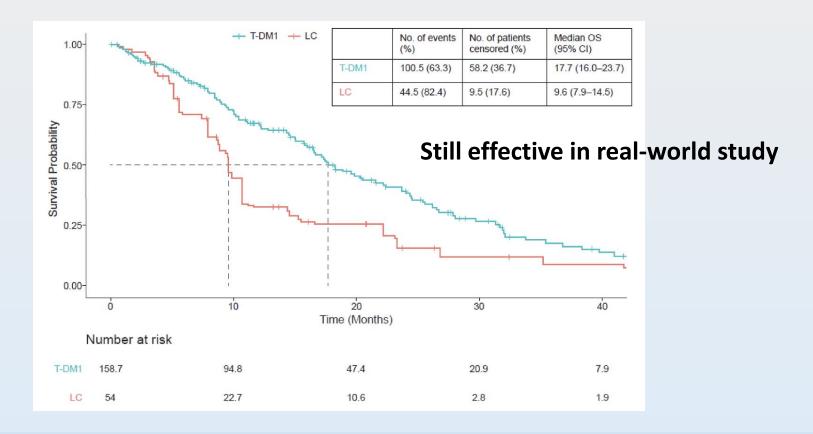

PFS L + C: 6.4m


T-DM1: 9.6m HR: 0.65

OS


L + C: 25.1m

T-DM1: 30.9m HR:0.68



T-DM1 in patients with brain metastasis

T-DM1 in patients with brain metastasis(RWE)

EMILIA trial - AE

	Kadcyla (Kadcyla (n = 490)		(n = 488)
	Events of any grade	Grade ≥3	Events of any grade	Grade ≥3
Any event	470 (95.9)	200 (40.8)	477 (97.7)	278 (57.0)
Specific events				
Diarrhoea	114 (23.3)	8 (1.6)	389 (79.7)	101 (20.7)
PPE syndrome	6 (1.2)	0 (0)	283 (58.0)	80 (16.4)
Vomiting	93 (19.0)	4 (0.8)	143 (29.3)	22 (4.5)
Hypokalaemia	42 (8.6)	11 (2.2)	42 (8.6)	20 (4.1)
Neutropenia	29 (5.9)	10 (2.0)	42 (8.6)	21 (4.3)
Fatigue	172 (35.1)	12 (2.4)	136 (27.9)	17 (3.5)
Nausea	192 (39.2)	4 (0.8)	218 (44.7)	12 (2.5)
Anaemia	51 (10.4)	13 (2.7)	39 (8.0)	8 (1.6)
Mucosal inflammation	33 (6.7)	1 (0.2)	93 (19.1)	11 (2.3)
Elevated ALT	83 (16.9)	14 (2.9)	43 (8.8)	7 (1.4)
Elevated AST	110 (22.4)	21 (4.3)	46 (9.4)	4 (0.8)
Thrombocytopenia	137 (28.0)	63 (12.9)	12 (2.5)	1 (0.2)

Management AE

Thrombocytopenia

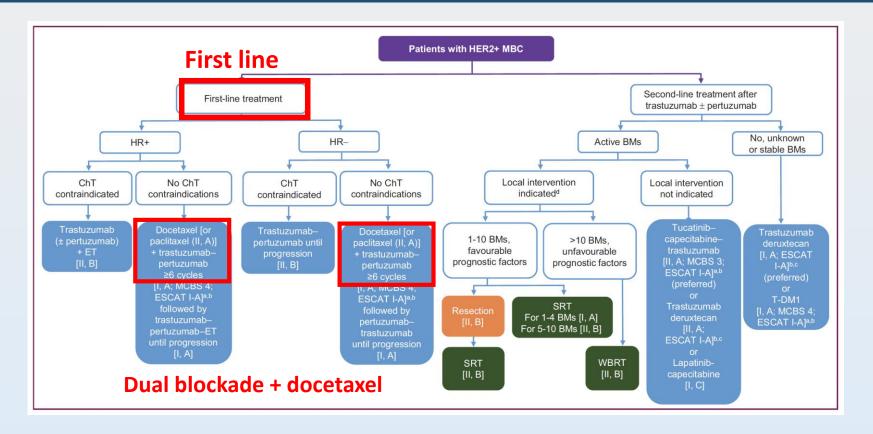
- For most patients, first occurrence of grade 3-4 thrombocytopenia reported during first two cycles of Kadcyla
- With dose modifications, the majority of patients continued treatment

Hepatotoxicity

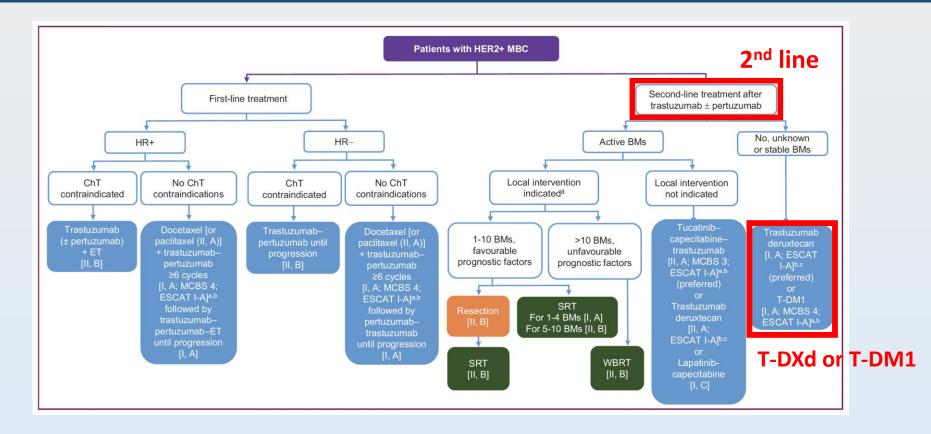
- Hyperbilirubinemia (any grade) more frequent with lapatinib+capecitabine than with Kadcyla (8.2% vs.1.2%)
- With appropriate dose modifications, most patients with grade 3-4 serum ALT elevations continued treatment

Left ventricular ejection fraction

- LVEF of ≥45% maintained in the majority of patients
- Three patients in each group had a decrease from baseline to <40%

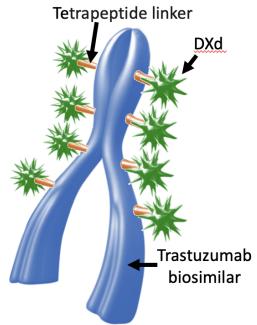

Management of AE

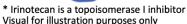
	Dose Modifications for Patients with MBC					
Adverse reaction	Severity	Treatment modification				
Left Ventricular Dysfunction	Symptomatic CHF	Discontinue KADCYLA				
Dystanction	LVEF < 40%	Do not administer KADCYLA Repeat LVEF assessment within 3 weeks. If LVEF < 40% is confirmed, discontinue KADCYLA				
	LVEF 40% to \leq 45% and decrease is \geq 10% points from baseline	Do not administer KADCYLA Repeat LVEF assessment within 3 weeks. If the LVEF has not recovered to within 10% points from baseline, discontinue KADCYLA				
	LVEF 40% to \leq 45% and decrease is $<$ 10% points from baseline	Continue treatment with KADCYLA. Repeat LVEF assessment within 3 weeks.				
	LVEF > 45%	Continue treatment with KADCYLA.				


Contents

- 1 Kadcyla: The first ADC for treating metastatic breast cancer(MBC)
- Treatment Recommendations in 2L HER2-positive MBC
- Optimal treatment sequence beyond 2L HER2+ MBC
- 4 Summary

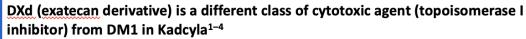
Pan-Asian adapted ESMO guideline for HER2+ MBC




Pan-Asian adapted ESMO guideline for HER2+ MBC

T-DXd: An ADC based on a trastuzumab biosimilar linked to a topoisomerase I inhibitor

F-DXd components


Humanised trastuzumab biosimilar¹⁻⁴

 Trastuzumab biosimilar targets HER2-expressing tumours, in a similar manner to the trastuzumab antibody in Kadcyla

Stable tetrapeptide linker¹⁻⁴

Cleavable linker prevents premature release of <u>DXd</u>-conjugated cytotoxic agent

- DXd causes DNA damage and apoptotic cell death⁵
- Membrane-permeable DXd can elicit a bystander effect in neighbouring cells, unlike the DM1 payload in Kadcyla⁶
- DXd is 10-fold more potent than irinotecan (a topoisomerase I inhibitor used to treat several solid tumours)^{6,7,*}
- Drug-antibody ratio of ~8:1^{1-3,8} is higher than Kadcyla (~3.5:1)^{9,10}

Pharmacological differences between Kadcyla and T-DXd may lead to distinct efficacy and safety profiles between Kadcyla and T-DXd

1. Enhertu Pl 2021; 2. Enhertu SmPC 2021; 3. Modi S, et al. N Engl J Med 2020; 382:610–621 (incl. supplemental information); 4. Doi T, et al. Lancet Oncol 2017; 18:1512–1522; 5. Ogitani Y, et al. Clin Cancer Res 2016; 22:5097–5108; 6. Ogitani Y, et al. Cancer Sci 2016; 107:1039–1046; 7. Nakada T, et al. Chem Pharm Bull 2019; 67:173–185; 8. Cortés J, et al. ESMO 2021 (Abstract LBA1; presidential symposium); 9. Lewis Phillips GD, et al. Cancer Res 2008; 68:9280–9290; 10. Barok M, et al. Breast Cancer Res 2014; 16:209.

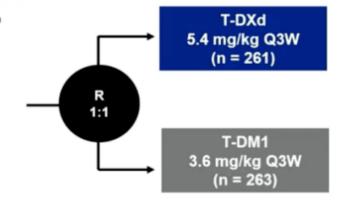
The cytotoxic payload from an ADC may target neighbouring cancer cells (bystander killing effect)

The long-term impact of the T-DXd bystander killing effect remains to be determined

1. Lewis Phillips GD, et al. Cancer Res 2008; 68:9280–9290; 2. Kovtun YV, et al. Cancer Res 2006; 66:3214–3221; 3. LoRusso PM, et al. Clin Cancer Res 2011; 17:6437–6447; 4. Ogitani Y, et al. Cancer Sci 2016; 107:1039–1046; 5. Nakada T, et al. Chem Pharm Bull 2019; 67:173-185.

	T-DXd (Enhertu)	T-DM1 (Kadcyla)
Drug-antibody ratio (DAR)	8:1	3.5:1
Payload	Deruxtecan (topoisomerase I inhibitor)	Emtansine (anti-microtubule agent)
Membrane permeability	High	Low
Linker	Cleavable	Non-cleavable
Bystander killing effect	Strong	Minimal

DESTINY-Breast03: First Randomized Ph3 Study of T-DXd


An open-label, multicenter study (NCT03529110)

Patients

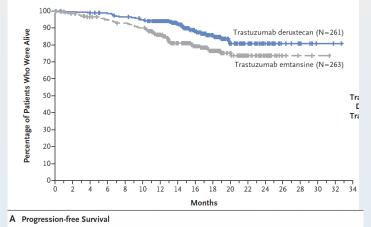
- Unresectable or metastatic HER2-positive^a breast cancer
- Previously treated with trastuzumab and taxane in advanced/metastatic setting^b
- Could have clinically stable, treated brain metastases

Stratification factors

- Hormone receptor status
- Prior treatment with pertuzumab
- History of visceral disease

Primary endpoint

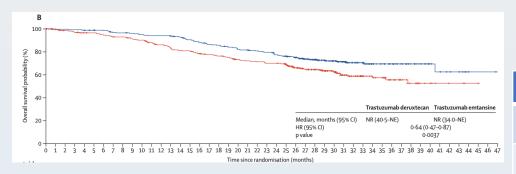
PFS (BICR)

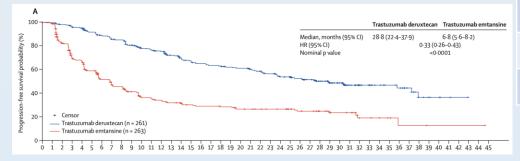

Key secondary endpoint

OS

Secondary endpoints

- ORR (BICR and investigator)
- DOR (BICR)
- PFS (investigator)
- Safety




Percentage of Patients	90- 80- 70- 60- 50- 40-	de de la companya de	44	1.		Harry Harry					rastu	zuma	b der	uxteca	an (N≡	=261) •	
Perce	30- 20- 10- 0	2	4	6	8	10	12	14	16 Nonth	18	Trastu 20	uzuma	ab em	tansir	ne (N=	=263)	+

Follow-up 16.2 months (2022)					
	T-DXd	T-DM1			
Median OS (mo)	NR	NR			
HR (95% CI)	0.55 (0.36, 0.86)				
Median PFS(mo)	NR	6.8			
HR (95% CI)	0.28 (0.22, 0.37)				

OS

PFS

2023 updated result					
	T-DXd T-DM				
Median OS (mo)	NR	NR			
HR (95% CI)	0.64 (0.47, 0.87)				
Median PFS(mo)	28.8 6.8				
HR (95% CI)	0.33 (0.26, 0.43)				

	16.2 months follow-up (2022)		28 months (20	follow-up 23)	43 months follow-up (2024)		
	T-DXd	T-DM1	T-DXd	T-DM1	T-DXd	T-DM1	
Median OS (mo)	NR	NR	NR	NR	52.6	42.7	
HR (95% CI)	0.55 (0.36, 0.86)		0.64 (0.47, 0.87)		0.73 (0.56, 0.94)		
Median PFS(mo)	NR	6.8	28.8	6.8	29.0	7.2	
HR (95% CI)	0.28 (0.22, 0.37)		0.33 (0.26, 0.43)		0.30 (0.24, 0.38)		

The benefit of overall survival persisted, but less significant

DB 03 subsequent treatment

	T-DXd	T-DM1	
	5.4 mg/kg Q3W	3.6 mg/kg Q3W	
n (%)	n = 261	n = 263	
Type of post-trial anticancer systemic		0	/
treatment ^c		Only 32.3	% cross-over
Trastuzumab	57 (39.6)	103 (52.0)	
T-DXd	12 (8.3)	64 (32.3)	
T-DM1	75 (52.1)	26 (13.1)	
Pertuzumab	17 (11.8)	31 (15.7)	
Taxane	22 (15.3)	38 (19.2)	
Taxane and trastuzumab	12 (8.3)	33 (16.7)	
Other HER2-directed therapy	57 (39.6)	102 (51.5)	
HER2-directed TKI	52 (36.1)	95 (48.0)	
Other HER2-directed antibody or ADC	13 (9.0)	23 (11.6)	
Hormone therapy	29 (20.1)	41 (20.7)	
Other systemic therapy	100 (69.4)	158 (79.8)	

AE in Destiny Breast 03

	Trastuzuma deruxtecan (n=257)		Trastuzuma group (n=26	b emtansine 51)
	Any grade	Grade ≥3	Any grade	Grade ≥3
Blood and lymph	atic system di	isorders		
Anaemia	95 (37%)	24 (9%)	51 (20%)	17 (7%)
Platelet count decreased*	64 (25%)	20 (8%)	114 (44%)	52 (20%)
White blood cell count decreased	60 (23%)	16 (6%)	16 (6%)	2 (<1%)
Gastrointestinal o	disorders			
Nausea	198 (77%)	18 (7%)	79 (30%)	1 (<1%)
Vomiting	133 (52%)	4 (2%)	28 (11%)	2 (<1%)
Constipation	96 (37%)	0	51 (20%)	0
Diarrhoea	83 (32%)	3 (1%)	21 (8%)	2 (<1%)
General disorders				
Fatigue	79 (31%)	15 (6%)	53 (20%)	2 (<1%)
Headache	61 (24%)	1 (<1%)	40 (15%)	0

T-DXd	T-DM1
More WBC decreased	More PLT decreased
More N/V	

AE in Destiny Breast 03

T-DXd	T-DM1
More WBC decreased	More PLT decreased
More G3/4 neutropenia	
More N/V, decreased appetite	More liver function abnormality
More Alopecia	

	Trastuzuma deruxtecan (n=257)	~	Trastuzumab emtansine group (n=261)		
	Any grade	Grade ≥3	Any grade	Grade ≥3	
Investigations					
Neutrophil count decreased†	79 (31%)	41 (16%)	30 (11%)	8 (3%)	
Aspartate aminotransferase increased	72 (28%)	2 (<1%)	108 (41%)	14 (5%)	
Alanine aminotransferase increased	59 (23%)	4 (2%)	83 (32%)	12 (5%)	
Metabolism and n	utrition diso	rders		_	
Decreased appetite	78 (30%)	4 (2%)	46 (18%)	1 (<1%)	
Bodyweight decreased	58 (23%)	6 (2%)	23 (9%)	2 (<1%)	
Skin and subcutaneous disorders					
Alopecia	102 (40%)	1 (<1%)‡	9 (3%)	0	

DB 03 ILD 2024 updated

n (%)	T-DXd, 5.4 mg/kg Q3W, n=257	T-DM1, 3.6 mg/kg Q3W, n=261
Any grade	43 (16.7)	9 (3.4)
Grade 1	11 (4.3)	5 (1.9)
Grade 2	30 (11.7)	3 (1.1)
Grade 3	2 (0.8)	1 (0.4)
Grade 4	0	0
Grade 5	0	0
Grade ≥3	2 (0.8)	1 (0.4)

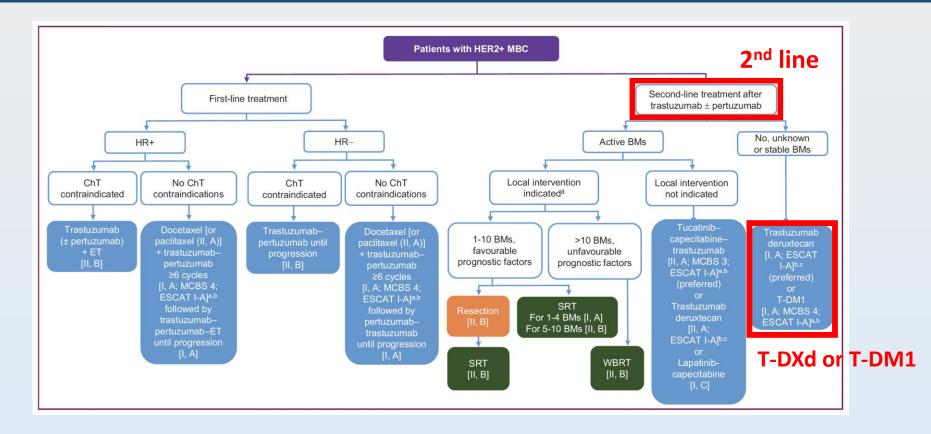
Interstitial lung disease(ILD) in DB 03

	T-DXd	T-DM1
Incidence (%)	16.7	3.4
Time to ILD (mo)	8.1	11.7

A 57 y/o woman received 4 cycles of T-DXd...

AE in Destiny Breast 03

More TEAE with T-DXd


n (%)	T-DXd, 5.4mg/kg Q3W, n=257	T-DM1, 3.6 mg/kg Q3W, n=261
Any-grade TEAEs	256 (99.6)	249 (95.4)
Drug-related	252 (98.1)	228 (87.4)
Grade ≥3 TEAEs	149 (58.0)	136 (52.1)
Drug-related	125 (48.6)	111 (42.5)
Serious TEAEs	71 (27.6)	59 (22.6)
Drug-related	35 (13.6)	20 (7.7)

AE in Destiny Breast 03

More drug interruption with T-DXd

n (%)	T-DXd, 5.4 mg/kg Q3W, n=257	T-DM1, 3.6 mg/kg Q3W, n=261
TEAEs leading to dose reduction	73 (28.4)	40 (15.3)
Drug-related	72 (28.0)	40 (15.3)
TEAEs leading to drug interruption	146 (56.8)	78 (29.9)
Drug-related	113 (44.0)	48 (18.4)
TEAEs associated with death	9 (3.5)	7 (2.7)
Drug-related	0	0

Pan-Asian adapted ESMO guideline for HER2+ MBC

Guidelines are starting to recommend T-DXd (if available); while T-DM1 remains as a valid option in the 2L setting

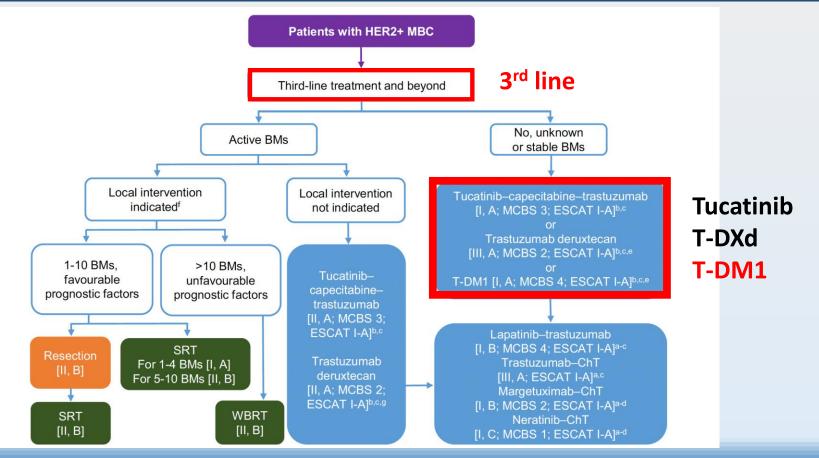
	T-DM1	T-DXd	
NCCN	2L option if not a candidate for T-DXd; 3L+ option	Preferred 2L option†	
ESMO	2L option in cases where T-DXd is unavailable; 3L option for pts who have not received Kadcyla in 2L	Preferred 2L option; may also be used in the 3L+ setting	
ASCO	3L+ for pts who have not received Kadcyla in 2L	Preferred regimen in 2L; may also be used in the 3L+ setting	

[†] T-DXd may be considered in 1L for patients who relapse within 6 months of neo/adjuvant therapy (or 12 months for PERJETA-containing regimens).

¹L, first-line; 2L, second-line; 3L, third-line; BMs, brain metastases, mBC, metastatic breast cancer; SoC, standard of care; pts, patients.

^{1.} NCCN Breast Cancer Guidelines. Version 4, 202 ; 2. Gennari A, et al. Ann Oncol 2021; 32:1475–1495; 3. AGO BC Guidelines 2023; 4. Giordano S, et al. J Clin Oncol 2022

T-DXd is still effective in 3rd line


	DB03 (2	-3 line)	DB02 (3-4 line)		
	T-DXd arm	T-DM1 arm	T-DXd arm	TPC arm	
Prior line of Tx	1 prior line: 41.4% 2 prior line: 23.0%	1 prior line: 38.8% 2 prior line:24.3%	2 prior line: 47% 3 prior line: 30%	2 prior line: 46% 3 prior line: 31%	
ORR	78.9%	36.9%	70% 29%		
CR	12.6%	4.2%	14%	5%	
PR	66.3%	32.7%	56%	24%	
Median PFS	29.0 m	7.2 m	17.8 m 6.9 m		
HR	0.30		0.35		
Median OS	52.6m	42.7m	39.2 m 26.5 m		
HR	0.73		0.65		

Contents

- Treatment Recommendations in 2L HER2-positive MBC
- Optimal treatment sequence beyond 2L HER2+ MBC
- 4 Summary

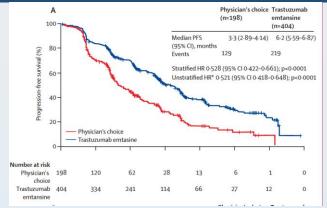
Pan-Asian adapted ESMO guideline for HER2+ MBC

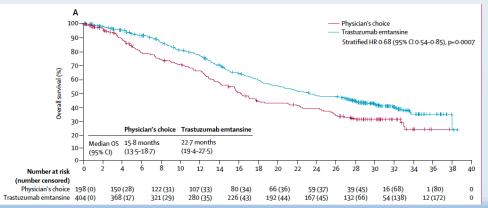
NCCN guideline for HER2+ MBC

If tucatinib is not available, consider T-DM1

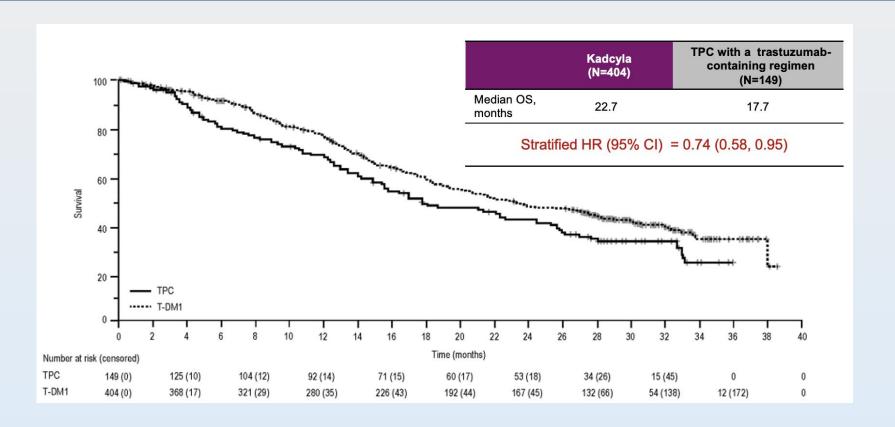
NCCN Guidelines Version 4.2024 Invasive Breast Cancer

NCCN Guidelines Index
Table of Contents
Discussion

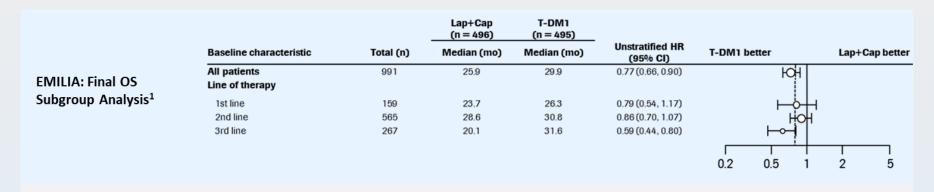

SYSTEMIC THERAPY REGIMENS FOR RECURRENT UNRESECTABLE (LOCAL OR REGIONAL) OR STAGE IV (M1) DISEASE^k


HR-Positive or -Negative and HER2-Positive ^{j,k}				
Setting	Regimen			
First Line ^l	Pertuzumab + trastuzumab + docetaxel (Category 1, preferred)			
First Line.	Pertuzumab + trastuzumab + paclitaxel (preferred)			
Second Line ⁿ	Fam-trastuzumah deruxtecan-nxki ^m (Category 1, preferred)			
Third Line	Tucatinib + trastuzumab + capecitabine ⁿ (Category 1, preferred)			
Third Line	Ado-trastuzumab emtansine (T-DM1) ^o			
	Trastuzumab + docetaxel or vinorelbine			
	Trastuzumab + paclitaxel ± carboplatin			
Fourth Line	Capecitabine + trastuzumab or lapatinib			
and Beyond	Trastuzumab + lapatinib (without cytotoxic therapy)			
(optimal sequence is	Trastuzumab + other chemotherapy agents ^{q,r}			
not known) ^p	Neratinib + capecitabine			
	Margetuximab-cmkb + chemotherapy (capecitabine, eribulin, gemcitabine, or vinorelbine)			
	Targeted Therapy Options BINV-Q (6)			

TH3RESA T-DM1 has shown PFS and OS benefit vs. TPC in 2L+ patients


All patients had received prior treatment with trastuzumab, lapatinib and a taxane

	T-DM1	TPC		
ORR (%)	31	9		
PFS (m)	6.2	3.3		
	HR:0.528(0.422, 0.661) p<0.0001			
OS (m)	22.7	15.8		
	HR:0.68(0.54, 0.85) p<0.0007			



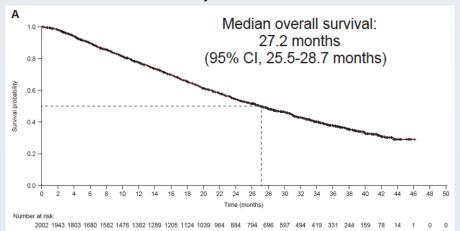
T-DM1 provide longer OS than other trastuzumab-based Tx

T-DM1 provide longer OS in later line MBC

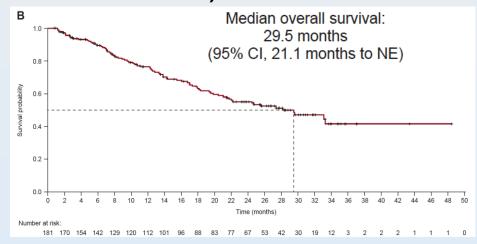
TH3RESA: OS Subgroup Analysis^{1,2}

		(n = 198)	(n = 404)	_		
Baseline characteristic	Total (n)	Median (mo)	Median (mo)	Unstratified HR (95% CI)	T-DM1 better	TPC better
All patients	602	15.8	22.7	0.69 (0.55, 0.86)	ф	_
Number of prior regimens in advanced setting (excluding hormonal therapy)						
≤3	200	17.0	24.0	0.73 (0.49, 1.09)	⊢∳- I	
4–5	217	16.1	20.3	0.75 (0.52, 1.09)	- - 1	
>5	185	13.3	21.7	0.54 (0.36, 0.81)	⊢ ∞∔	
					0.2 0.5 1	2 5

T-DM1


TPC

CI, confidence interval; HR, hazard ratio; OS, overall survival; TPC, treatment of physician's choice. 1. Roche, Data on file; 2. Wildiers H, et al. SABCS 2015 (Abstract S5-05; oral presentation).


KAMILLA: Efficacy results for the largest cohort of T-DM1-treated participants to date were consistent with prior randomised studies

• 2002 patients(cohort 1, Global) and 181 patients(cohort 2, Asian) with HER2-positive breast cancer were treated with T-DM1 in a single-arm, open-label, international, Phase IIIb study. The majority of patients received ≥2 prior metastatic treatment lines

Cohort 1, Global N=2002

Cohort 2, Asian N=181

Contents

- 1 Kadcyla: The first ADC for treating metastatic breast cancer(MBC)
- Treatment Recommendations in 2L HER2-positive MBC
- Optimal treatment sequence beyond 2L HER2+ MBC
- 4 Summary

Summary

- Kadcyla (T-DM1) is one of the effective 2L treatments for HER2-positive MBC patients including those with brain metastases
- For patients who have progressive disease after T-DXd, Kadcyla is also a valid 3L option
- Kadcyla is well tolerated with a favorable toxicity profile
- Adverse effects may be considered when determining the treatment sequence for HER2+ metastatic breast cancer (MBC) in the real-world setting

